This study investigates the use of ultrafast lasers for postprocessing fused deposition modeling 3D-printed parts, focusing on improving surface roughness and analyzing its corresponding effects on tensile strength and fatigue life. We explore the adoption of high repetition rate ultrafast laser light and raster scanning techniques to address the limitations associated with as-deposited surface roughness in 3D-printed objects. By employing a design of experiment framework using Taguchi’s orthogonal arrays, we analyze the effects of various laser parameters on the surface finish and mechanical integrity of printed polylactic acid parts. Our study indicates significant enhancements: a 90% reduction in surface roughness, a 20% increase in ultimate tensile strength, and a 165% increase in high-cycle fatigue life, showcasing the considerable benefits of ultrafast laser processing. We demonstrate that low-thermal-impact surface processing can substantially elevate the quality and durability of 3D-printed materials. The analysis points to the importance of controlling certain factors during the laser postprocessing phase, as they impact surface conditions and broader material properties. This work positions ultrafast laser processing as a viable technique to bridge the gap between additive manufacturing and traditional fabrication methods, particularly in the context of improving the surface quality and structural performance of 3D-printed thermoplastics. The outcomes could significantly benefit industries where additive manufacturing is prevalent by expanding the practical applications of 3D-printed components.

1.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Compos. B Eng.
143
,
172
196
(
2018
).
2.
J. C.
Najmon
,
S.
Raeisi
, and
A.
Tovar
, “
Review of additive manufacturing technologies and applications in the aerospace industry
,” in
Additive Manufacturing of the Aerospace Industry
(Elsevier, Amsterdam, Netherlands,
2019
), pp.
7
31
.
3.
J. R. C.
Dizon
,
C. C. L.
Gache
,
H. M. S.
Cascolan
,
L. T.
Cancino
, and
R. C.
Advincula
, “
Post-processing of 3D-printed polymers
,”
Technologies
9
,
61
–72 (
2021
).
4.
L.
Malagutti
,
G.
Ronconi
,
M.
Zanelli
,
F.
Mollica
, and
V.
Mazzanti
, “
A post-processing method for improving the mechanical properties of fused-filament-fabricated 3D-printed parts
,”
Processes
10
,
2399
–2412 (
2022
).
5.
M. R.
Khosravani
,
M. R.
Ayatollahi
, and
T.
Reinicke
, “
Effects of post-processing techniques on the mechanical characterization of additively manufactured parts
,”
J. Manuf. Process.
107
,
98
114
(
2023
).
6.
I.
Karakurt
and
L.
Lin
, “
3D printing technologies: Techniques, materials, and post-processing
,”
Curr. Opin. Chem. Eng.
28
,
134
143
(
2020
).
7.
D.
Bhaduri
,
P.
Penchev
,
A.
Batal
,
S.
Dimov
,
S. L.
Soo
,
S.
Sten
,
Urban
Harrysson
,
Zhenxue
Zhang
, and
H.
Dong
, “
Laser polishing of 3D printed mesoscale components
,”
Appl. Surf. Sci.
405
,
29
46
(
2017
).
8.
R. T.
Mushtaq
,
A.
Iqbal
,
Y.
Wang
,
A. M.
Khan
, and
M. I.
Petra
, “
Advancing PLA 3D printing with laser polishing: Improving mechanical strength, sustainability, and surface quality
,”
Crystals
13
,
626
–634 (
2023
).
9.
A.
Gisario
,
M.
Barletta
, and
F.
Veniali
, “
Laser polishing: A review of a constantly growing technology in the surface finishing of components made by additive manufacturing
,”
Int. J. Adv. Manuf. Technol.
120
,
1433
1472
(
2022
).
10.
E.
Manco
,
E.
Cozzolino
, and
A.
Astarita
, “
Laser polishing of additively manufactured metal parts: A review
,”
Surf. Eng.
38
,
217
233
(
2022
).
11.
R. T.
Mushtaq
,
Y.
Wang
,
A. M.
Khan
,
M.
Rehman
,
X.
Li
, and
S.
Sharma
, “
A post-processing laser polishing method to improve process performance of 3D printed new industrial nylon-6 polymer
,”
J. Manuf. Process.
101
,
546
560
(
2023
).
12.
N.
Li
,
P.
Fan
,
Q.
Zhu
,
B.
Cui
,
J. F.
Silvain
, and
Y. F.
Lu
, “
Femtosecond laser polishing of additively manufactured parts at grazing incidence
,”
Appl. Surf. Sci.
612
,
155833
(
2023
).
13.
I.
Mingareev
,
T.
Bonhoff
,
A. F.
El-Sherif
,
W.
Meiners
,
I.
Kelbassa
,
T.
Biermann
, and
M.
Richardson
, “
Femtosecond laser post-processing of metal parts produced by laser additive manufacturing
,”
J. Laser Appl.
25
,
052009
(
2013
).
14.
L. L.
Taylor
,
J.
Qiao
, and
J.
Qiao
, “
Femtosecond laser polishing of optical materials
,”
Proc. SPIE
9633
,
165
172
(
2015
).
15.
M.
Hofele
,
J.
Schanz
,
B.
Burzic
,
S.
Lutz
,
M.
Merkel
, and
H.
Riegel
, “
Laser based post processing of additive manufactured metal parts
,” in
Lasers in Manufacturing (LIM)
(Springer, Cham, Switzerland,
2017
).
16.
J. S.
Chohan
and
R.
Singh
, “
Pre and post processing techniques to improve surface characteristics of FDM parts: A state of art review and future applications
,”
Rapid Prototyp. J.
23
,
495
513
(
2017
).
17.
B.
Wittbrodt
and
J. M.
Pearce
, “
The effects of PLA color on material properties of 3-D printed components
,”
Addit. Manuf.
8
,
110
116
(
2015
).
18.
J. B.
Soares
,
J.
Finamor
,
F. P.
Silva
,
L.
Roldo
, and
L. H.
Cândido
, “
Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing
,”
Rapid Prototyp. J.
24
,
1305
1316
(
2018
).
19.
G.
Morettini
,
M.
Palmieri
,
L.
Capponi
, and
L.
Landi
, “
Comprehensive characterization of mechanical and physical properties of PLA structures printed by FFF-3D-printing process in different directions
,”
Prog. Addit. Manuf.
7
,
1111
1122
(
2022
).
20.
M. A.
Tan
,
C. K.
Yeoh
,
P. L.
Teh
,
N. A.
Rahim
,
C. C.
Song
, and
N. S. S.
Mansor
, “
Effect of infill density and raster angle on the mechanical properties of PLA
,”
J. Phys.: Conf. Ser.
2080
,
012002
(
2021
).
21.
L.
Auffray
,
P.-A.
Gouge
, and
L.
Hattali
, “
Design of experiment analysis on tensile properties of PLA samples produced by fused filament fabrication
,”
Int. J. Adv. Manuf. Technol.
118
,
4123
4137
(
2022
).
22.
K.
Krishnaiah
and
P.
Shahabudeen
,
Applied Design of Experiments and Taguchi Methods
(
PHI Learning Pvt. Ltd.
, New Delhi, India,
2012
).
23.
S. C.
Tam
,
L. E.
Lim
, and
K. Y.
Quek
, “
Application of Taguchi methods in the optimization of the laser-cutting process
,”
J. Mater. Process. Technol.
29
,
63
74
(
1992
).
You do not currently have access to this content.