GaN is characterized by high electron velocity, high electric field, and excellent thermal conductivity, making it highly relevant across various fields. In this study, an ultrafast laser with a pulse duration of 8 ps and a wavelength of 532 nm was used to explore GaN’s ablation characteristics and its underlying mechanisms. Five distinct structures were identified, including shallow incomplete ablation, deep incomplete ablation, complete ablation with edge breakage, substrate damage, and successful ablation, all of which were linked to specific ablation parameters. Two primary ablation mechanisms were observed: one at low laser fluence, where high decomposition pressure led to ablation, and another at high laser energy, where intense electromagnetic effects directly caused ablation. The main defects identified were stress cracking due to high decomposition pressure and substrate damage resulting from excessive laser energy. The threshold for stress cracking was approximately 0.01 J/cm2, while substrate damage occurred at about 0.25 J/cm2 and increased with the decreasing repetition frequency under the influence of spot overlap. By adjusting the laser parameters, different ablation mechanisms could be employed, enabling the fabrication of microgrooves focused on edge quality and substrate recovery that prioritized cleanliness. This study provides valuable insights into the interaction mechanisms between ultrafast lasers and GaN, offering a new theoretical foundation and practical guidance for achieving precise, low-carbon GaN micro/nano machining.

1.
K.
Jiang
,
P.
Zhang
,
S.
Song
,
T.
Sun
,
Y.
Chen
,
H.
Shi
,
H.
Yan
,
Q.
Lu
, and
G.
Chen
, “A review of ultra-short pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN,”
Mater. Sci. Semicond. Process.
180
,
108559
(
2024
).
2.
Q.
Li
,
J.
Yu
,
S.
Wang
,
G.
Wang
,
G.
Liu
,
L.
Liu
,
S.
Zhang
,
X.
Xu
, and
L.
Zhang
, “Research progress in the postprocessing and application of GaN crystal,”
CrystEngComm
25
,
715
725
(
2023
).
3.
H. A. A.
Abdul Amir
,
M. A.
Fakhri
, and
A.
Abdulkhaleq Alwahib
, “Review of GaN optical device characteristics, applications, and optical analysis technology,”
Mater. Today: Proc.
42
,
2815
2821
(
2021
).
4.
K. H.
Li
,
W. Y.
Fu
, and
H. W.
Choi
, “Chip-scale GaN integration,”
Prog. Quantum Electron.
70
, 100247 (
2020
).
5.
A.
Toprak
,
D.
Yılmaz
, and
E.
Özbay
, “A study on GaN-based betavoltaic batteries,”
Semicond. Sci. Technol.
37
,
125005
(
2022
).
6.
L.
Liu
and
J. H.
Edgar
, “Substrates for gallium nitride epitaxy,”
Mater. Sci. Eng., R
37
,
61
127
(
2002
).
7.
G.
Li
,
W.
Wang
,
W.
Yang
,
Y.
Lin
,
H.
Wang
,
Z.
Lin
, and
S.
Zhou
, “GaN-based light-emitting diodes on various substrates: a critical review,”
Rep. Prog. Phys.
79
, 056501 (
2016
).
8.
M.
Förste
,
T.
Schneider
,
P.
Fischer
,
C.
Röder
,
O.
Pätzold
,
D.
Rafaja
, and
A.
Charitos
, “Growth and impact of intrinsic interlayers in high temperature vapor phase epitaxy of GaN,”
J. Cryst. Growth
636
,
127709
(
2024
).
9.
J.
Wang
,
F.
Fang
,
H.
An
,
S.
Wu
,
H.
Qi
,
Y.
Cai
, and
G.
Guo
, “Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales,”
Int. J. Extreme Manuf.
5
, 012005 (
2023
).
10.
L.
Song
,
X.
Yong
,
P.
Zhang
,
S.
Song
,
K.
Chen
,
H.
Yan
,
T.
Sun
,
Q.
Lu
,
H.
Shi
,
Y.
Chen
, and
Y.
Huang
, “Recent progress of laser processing technology in micro-LED display manufacturing: A review,”
Opt. Laser Technol.
181
, 111710 (
2025
).
11.
Y.
Gong
and
Z.
Gong
, “Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays,”
Adv. Mater. Technol.
8
, 2200949 (
2022
).
12.
J.
Zhang
,
K.
Sugioka
,
S.
Wada
,
H.
Tashiro
, and
K.
Toyoda
, “Precise microfabrication of wide band gap semiconductors (SiC and GaN) by VUV-UV multiwavelength laser ablation,”
Appl. Surf. Sci.
127–129
,
793
799
(
1998
).
13.
C.-F.
Chu
,
C. K.
Lee
,
C. C.
Yu
,
Y. K.
Wang
,
J. Y.
Tasi
,
C. R.
Yang
, and
S. C.
Wang
, “High etching rate of GaN films by KrF excimer laser,”
Mater. Sci. Eng., B
82
,
42
44
(
2001
).
14.
E.
Gu
,
C. W.
Jeon
,
H. W.
Choi
,
G.
Rice
,
M. D.
Dawson
,
E. K.
Illy
, and
M. R. H.
Knowles
, “Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser,”
Thin Solid Films
453−454
,
462
466
(
2004
).
15.
R. W.
Martin
,
H. S.
Kim
,
Y.
Cho
,
P. R.
Edwards
,
I. M.
Watson
,
T.
Sands
,
N. W.
Cheung
, and
M. D.
Dawson
, “GaN microcavities formed by laser lift-off and plasma etching,”
Mater. Sci. Eng., B
93
,
98
101
(
2002
).
16.
M. P.
Echlin
,
M. S.
Titus
,
M.
Straw
,
P.
Gumbsch
, and
T. M.
Pollock
, “Materials response to glancing incidence femtosecond laser ablation,”
Acta Mater.
124
,
37
46
(
2017
).
17.
A.
Halstuch
,
O.
Westreich
,
N.
Sicron
, and
A. A.
Ishaaya
, “Femtosecond laser inscription of Bragg gratings on a thin GaN film grown on a sapphire substrate,”
Opt. Lasers Eng.
109
,
68
72
(
2018
).
18.
L. K.
Nolasco
,
G. F. B.
Almeida
,
T.
Voss
, and
C. R.
Mendonça
, “Femtosecond laser micromachining of GaN using different wavelengths from near-infrared to ultraviolet,”
J. Alloys Compd.
877
,
160259
(
2021
).
19.
G. F. B.
Almeida
,
L. K.
Nolasco
,
G. R.
Barbosa
,
A.
Schneider
,
A.
Jaros
,
I.
Manglano Clavero
,
C.
Margenfeld
,
A.
Waag
,
T.
Voss
, and
C. R.
Mendonça
, “Incubation effect during laser micromachining of GaN films with femtosecond pulses,”
J. Mater. Sci.: Mater. Electron.
30
,
16821
16826
(
2019
).
20.
J.
Park
,
Y.-G.
Sin
,
J.-H.
Kim
, and
J.
Kim
, “Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation,”
Appl. Surf. Sci.
384
,
353
359
(
2016
).
21.
T.
Passow
,
M.
Kunzer
,
A.
Pfeuffer
,
M.
Binder
, and
J.
Wagner
, “Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes,”
Appl. Phys. A
124
, 257 (
2018
).
22.
B.
Zhang
,
C.
Luo
, and
Y.-F.
Li
, “Damage-free transfer of GaN-based light-emitting devices and reuse of sapphire substrate,”
ECS J. Solid State Sci. Technol.
9
, 065019 (
2020
).
23.
W.
Sun
,
L.
Ji
,
Z.
Lin
,
J.
Zheng
,
Z.
Wang
,
L.
Zhang
, and
T.
Yan
, “Low-energy UV ultrafast laser controlled lift-off for high-quality flexible GaN-based device,”
Adv. Funct. Mater.
32
, 2111920 (
2022
).
24.
D.
Paipulas
,
S.
Butkus
,
V.
Sirutkaitis
,
U.
Klotzbach
,
R.
Kling
, and
A.
Watanabe
,
Laser-Based Micro- and Nanoprocessing XIII
(SPIE LASE, San Francisco,
2019
).
25.
V.
Voronenkov
,
N.
Bochkareva
,
R.
Gorbunov
,
A.
Zubrilov
,
V.
Kogotkov
,
P.
Latyshev
,
Y.
Lelikov
,
A.
Leonidov
, and
Y.
Shreter
, “Laser slicing: A thin film lift-off method for GaN-on-GaN technology,”
Results Phys.
13
,
102233
(
2019
).
26.
H.
Sena
,
A.
Tanaka
,
Y.
Wani
,
T.
Aratani
,
T.
Yui
,
D.
Kawaguchi
,
R.
Sugiura
,
Y.
Honda
,
Y.
Igasaki
, and
H.
Amano
, “Gallium nitride wafer slicing by a sub-nanosecond laser: effect of pulse energy and laser shot spacing,”
Appl. Phys. A
127
, 648 (
2021
).
27.
H.
Wei
,
C.
Huang
,
H.
Liu
,
D.
Liu
,
P.
Yao
, and
D.
Chu
, “Modeling and optimizing femtosecond laser process parameters for high-efficient and near damage-free micromachining of single-crystal GaN substrate,”
Mater. Sci. Semicond. Process.
153
, 107123 (
2023
).
28.
O.
Yan
,
P.
Kong
,
J.
Qian
,
Y.
Xiao
,
S.
Li
,
Z.
Feng
, and
M.
Sheng
, “Fabrication of three-dimensional microstructures on GaN surfaces through the integration of femtosecond laser ablation and ICP etching,”
Opt. Commun.
569
, 130822 (
2024
).
29.
Y.
Ou
,
C.
Li
,
J.
Qian
,
Y.
Xiao
,
S.
Li
, and
Z.
Feng
, “Fabrication of hexagonal microstructure on gallium nitride films by wet etching assisted femtosecond laser ablation,”
Opt. Commun.
528
, 128952 (
2023
).
30.
G.
Chen
,
Q.
Peng
,
J.
Long
,
H.
Luo
,
Y.
Zhou
,
X.
Xie
,
G.
Pan
, and
X.
Wang
, “A novel strategy achieving GaN ultra-smooth surface via a square, flat top beam shaped femtosecond laser processing combined with chemical mechanical polishing,”
ECS J. Solid State Sci. Technol.
11
,
054005
(
2022
).
31.
S.
Bornemann
,
T.
Meyer
,
T.
Voss
, and
A.
Waag
, “Ablation threshold of GaN films for ultrashort laser pulses and the role of threading dislocations as damage precursors,”
Opt. Express
30
,
47744
(
2022
).
32.
C.
Liu
,
F.
Feng
, and
Z.
Liu
, “Comparative analysis of optoelectrical performance in laser lift-off process for GaN-based green micro-LED arrays,”
Nanomaterials
13
, 15 (
2023
).
33.
F.
Wang
,
Q.
Liu
,
J.
Xia
,
M.
Huang
,
X.
Wang
,
W.
Dai
,
G.
Zhang
,
D.
Yu
,
J.
Li
, and
R.
Sun
, “Laser lift-off technologies for ultra-thin emerging electronics: Mechanisms, applications, and progress,”
Adv. Mater. Technol.
8
, 2201186 (
2022
).
34.
W.
Tian
,
Y.
Wu
,
T.
Wu
,
L.
Dou
,
X.
Cao
, and
J.
Li
, “Mechanisms and performance analysis of GaN-based micro-LED grown on pattern sapphire substrate by laser lift-off process,”
ECS J. Solid State Sci. Technol.
11
, 046001 (
2022
).
35.
W. Y.
Fu
and
H. W.
Choi
, “Progress and prospects of III-nitride optoelectronic devices adopting lift-off processes,”
J. Appl. Phys.
132
, 060903 (
2022
).
36.
S.
Chowdhury
,
S.
Alam
,
M. D.
Alam
, and
F. S.
Jui
, “Laser lift-off technique for applications in III-N microelectronics: A review,”
Microelectron. Eng.
290
,
112198
(
2024
).
37.
A.
Tanaka
,
R.
Sugiura
,
D.
Kawaguchi
,
Y.
Wani
,
H.
Watanabe
,
H.
Sena
,
Y.
Ando
,
Y.
Honda
,
Y.
Igasaki
,
A.
Wakejima
,
Y.
Ando
, and
H.
Amano
, “Laser slice thinning of GaN-on-GaN high electron mobility transistors,”
Sci. Rep.
12
, 7363 (
2022
).
38.
A.
Tanaka
,
R.
Sugiura
,
D.
Kawaguchi
,
T.
Yui
,
Y.
Wani
,
T.
Aratani
,
H.
Watanabe
,
H.
Sena
,
Y.
Honda
,
Y.
Igasaki
, and
H.
Amano
, “Smart-cut-like laser slicing of GaN substrate using its own nitrogen,”
Sci. Rep.
11
, 17949 (
2021
).
39.
F.
Dong
,
X.
Han
,
X.
Cai
,
C.
Li
,
H.
Lu
,
Y.
Guo
,
Y.
Hu
, and
S.
Liu
, “Periodic surface micro-nanostructures on GaN films induced by femtosecond laser irradiation,”
J. Manuf. Process.
123
,
142
149
(
2024
).
40.
R.
Miyagawa
,
H.
Matsuura
,
A.
Nakamura
, and
O.
Eryu
, “Formation of periodic nanostructures induced by circularly-polarized femtosecond laser,”
Jpn. J. Appl. Phys.
61
,
SK1003
(
2022
).
41.
Y.
Jiang
,
H.
Tan
, and
Y.
Zhao
, “Improving optical and electrical properties of GaN epitaxial wafers and enhancing luminescent properties of GaN-based light-emitting-diode with excimer laser irradiation,”
Symmetry
13
, 1935 (
2021
).
42.
F.
Wang
,
L.
Jiang
,
J.
Sun
,
C.
Pan
,
Y.
Lian
,
J.
Sun
,
K.
Wang
,
Q.
Wang
,
J.
Wang
, and
Y.
Lu
, “One-step fabrication method of GaN films for internal quantum efficiency enhancement and their ultrafast mechanism investigation,”
ACS Appl. Mater. Interfaces
13
,
7688
7697
(
2021
).
43.
X.
Cai
,
C.
Ji
,
Z.
Wang
,
S.
Wang
,
J.
Pan
,
C.
Lei
, and
S.
Liu
, “Ultrafast processes simulation under femtosecond laser irradiation of gallium nitride thin films,”
Comput. Mater. Sci.
214
, 111627 (
2022
).
You do not currently have access to this content.