To effectively remove composite automotive paint layers using laser cleaning while avoiding substrate damage, selecting optimal laser parameters through online monitoring is essential. A 1064 nm pulsed fiber laser with 100 kHz repetition rate and 150 ns pulse width was used to clean a white composite automotive paint layer (WCAPL) composed of clear, base, intermediate, and epoxy primer coatings. The variation in laser ablation thresholds of the WCAPL and the phosphate layer on the substrate was analyzed as a function of average laser power using an area extrapolation method. Based on these thresholds, the coatings were divided into two groups: outer coating combination (OCC) consisting of clear and white color coatings and inner coating combination (ICC) consisting of mid and epoxy primer coatings. Charred residue rates were also evaluated using area extrapolation, while an image binarization method assessed the correlation between the effective laser cleaning speed and the spot overlap rate. Laser-induced plasma spectroscopy measured the changes in elemental peak intensity with the number of laser cleanings. The optimal laser power, spot overlap rate, and number of laser cleanings for the OCC (14 W, 50%, five times) and the ICC (20 W, 50%, seven times) were identified. These settings result in a laser cleaning efficiency of up to 98.9% for the WCAPL without substrate damage. It is shown that the single-parameter experimental path “average laser power → spot overlap ratio → number of laser cleanings” proved effective in identifying optimal laser settings for high-quality, efficient removal of composite automotive paint layers, ensuring both safety and performance.

1.
K. M.
Yuvraj
,
M.
Suvradip
,
K. S.
Dinesh
,
K.
Shailesh
, and
K. N.
Ashish
, “
Effect of laser operating mode in paint removal with a fiber laser
,”
Appl. Surf. Sci.
264
,
892
901
(
2013
).
2.
D. H.
Zhang
,
J.
Xu
,
Z. C.
Li
,
Y.
Jin
,
X.
Su
,
D. B.
Shan
, and
B.
Guo
, “
Removal mechanisms of nanosecond pulsed laser cleaning of blue and red polyurethane paint
,”
Appl. Phys. A
128
,
1
14
(
2022
).
3.
C. G.
Jiao
,
R.
Geurts
, and
Y.
Rikers
, “
Ultra-short pulse laser ablation for cross-section of auto body paints
,”
Microsc. Microanal.
29
,
2077
2078
(
2023
).
4.
Z.
Zheng
,
C. F.
Wang
,
G.
Huang
,
W. J.
Feng
, and
D.
Liu
, “
Effect of defocused nanosecond laser paint removal on mild steel substrate in ambient atmosphere
,”
Materials
14
,
5969
5991
(
2021
).
5.
M. K. A. A.
Razab
,
A.
Mohamed Noor
,
M.
Suhaimi Jaafar
,
N. H.
Abdullah
,
F. M.
Suhaimi
,
M.
Mohamed
,
N.
Adaam
, and
N. A.
Auli Nik Yusuf
, “
A review of incorporating Nd:YAG laser cleaning principal in automotive industry
,”
J. Radiat. Res. Appl. Sci.
11
,
393
402
(
2018
).
6.
J. F.
Coutouly
,
P.
Deprez
,
F.
Breaban
, and
J. P.
Longuemard
, “
Optimisation of a paint coating ablation process by CO2 TEA laser: Thermal field modelling and real-time monitoring of the process
,”
J. Mater. Process. Technol.
209
,
5730
5735
(
2009
).
7.
S. L.
Li
,
Y. K.
Yang
,
S. H.
Gao
,
D. H.
Lin
,
G.
Li
,
Y.
Hu
, and
W. F.
Yang
, “
Research on LIBS online monitoring criteria for aircraft skin laser paint removal based on OPLS-DA
,”
Opt. Express
32
,
4122
4136
(
2024
).
8.
Y. Q.
Tong
,
J. F.
Shangguan
,
X. D.
Ren
,
A. H.
Yuan
,
J. F.
Liu
,
Z. H.
Lian
,
X. C.
Hu
,
J.
Ma
,
Z.
Yang
, and
D. F.
Wang
, “
Surface quality of laser paint removal of marine steel: A comparative study using a Gaussian beam and a flat-top beam
,”
Appl. Opt.
61
,
2237
2246
(
2022
).
9.
W. B.
Xiong
,
Y. Z.
Shen
,
Z. R.
He
,
S.
Shu
, and
S. S.
Song
, “
Laser-induced paint removal of CFRP composite skin without damage of interface aluminum layer
,”
Infrared Phys. Technol.
137
,
105159
(
2024
).
10.
J. Y.
Gu
,
X.
Su
,
Y.
Jin
,
W. Q.
Li
,
Z. H.
Zeng
,
D. H.
Zhang
,
J.
Xu
, and
B.
Guo
, “
Towards low-temperature laser paint stripping by photochemical mechanism on CFRP substrates
,”
J. Manuf. Process.
85
,
272
280
(
2023
).
11.
J.
Deng
,
G.
Zhao
,
J.
Lei
,
L.
Zhong
, and
Z.
Lei
, “
Research progress and challenges in laser-controlled cleaning of aluminum alloy surfaces
,”
Materials
15
,
5469
(
2022
).
12.
G.
Zhu
,
Z.
Xu
,
Y.
Jin
,
X.
Chen
,
L.
Yang
,
J.
Xu
,
D.
Shan
,
Y.
Chen
, and
B.
Guo
, “
Mechanism and application of laser cleaning: A review
,”
Opt. Lasers Eng.
157
,
107130
(
2022
).
13.
H.
Lu
,
D.
Wang
,
S.
Wu
,
Z.
Pan
,
G.
Wang
,
G.
Guo
,
Y.
Tian
, and
D.
Xiang
, “
A review of laser polishing on Ti6Al4V based on energy density
,”
J. Mater. Process. Technol.
331
,
118520
(
2024
).
14.
P.
Pouli
,
M.
Oujja
, and
M.
Castillejo
, “
Practical issues in laser cleaning of stone and painted artefacts: Optimisation procedures and side effects
,”
Appl. Phys. A
106
,
447
464
(
2012
).
15.
Q.
Sun
,
J. Z.
Zhou
,
X. K.
Meng
,
J. N.
Yang
,
Z. H.
Guo
,
M.
Zhu
, and
S.
Guo
, “
Mechanism and threshold fluence of nanosecond pulsed laser paint removal
,”
Rare Met.
41
,
1022
1031
(
2022
).
16.
T.
Shan
,
F. S.
Yin
,
S. J.
Wang
,
Y. L.
Qiao
, and
P. F.
Liu
, “
Surface integrity control of laser cleaning of an aluminum alloy surface paint layer
,”
Appl. Opt.
59
,
9313
9319
(
2020
).
17.
Z.
Zhao
,
X.
Liu
,
Z.
Chen
,
Y.
Tian
,
M.
Chen
,
L.
Liu
, and
F.
Song
, “
Evaluation of laser cleaning effect for the removal of paint on aluminum alloys
,”
Int. J. Adv. Manuf. Technol.
126
,
3193
3203
(
2023
).
18.
DIN EN 12476:2000
,
Phosphate Conversion Coatings of Metals - Method of Specifying Requirements
(
Beuth Verlag GmbH
,
Berlin
,
2000
).
19.
DIN EN 16985:2019
,
Spray Booths for Organic Coating Material - Safety Requirements
(
Beuth Verlag GmbH
,
Berlin
,
2019
).
20.
P.
Yang
,
W.
Song
,
X.
Zhao
,
R.
Zheng
, and
L.
Qingge
, “
An improved Otsu threshold segmentation algorithm
,”
Int. J. Comput. Sci. Eng.
22
,
146
153
(
2020
).
21.
R. W.
Zha
,
Y.
Bai
,
L. D.
Yu
, and
B.
Li
, “
Laser derusting on low carbon steel surface based on coordinated application of machine vision and laser-induced breakdown spectroscopy
,”
Appl. Opt.
61
,
2147
2154
(
2022
).
22.
P. T.
Mannion
,
J.
Magee
,
E.
Coyne
,
G. M.
O’Connor
, and
T. J.
Glynn
, “
The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air
,”
Appl. Surf. Sci.
233
,
275
287
(
2004
).
23.
A. K.
Bhandari
,
I. V.
Kumar
, and
K.
Srinivas
, “
Cuttlefish algorithm-based multilevel 3-D Otsu function for color image segmentation
,”
IEEE Trans. Instrum. Meas.
69
,
1871
1880
(
2020
).
24.
J. D.
Pedarnig
,
S.
Trautner
,
S.
Grünberger
,
N.
Giannakaris
,
S.
Eschlböck-Fuchs
, and
J.
Hofstadler
, “
Review of element analysis of industrial materials by in-line laser-induced breakdown spectroscopy (LIBS)
,”
Appl. Sci.
11
,
9274
(
2021
).
25.
F. J.
Fortes
,
J.
Moros
,
P.
Lucena
,
L. M.
Cabalin
, and
J. J.
Laserna
, “
Laser-Induced breakdown spectroscopy
,”
Anal. Chem.
85
,
640
669
(
2013
).
26.
R.
Noll
,
C.
Fricke-Begemann
,
S.
Connemann
,
C.
Meinhardt
, and
V.
Sturm
, “
LIBS analyses for industrial applications - an overview of developments from 2014 to 2018
,”
J. Anal. At. Spectrom.
33
,
945
956
(
2018
).
27.
T. X.
Bian
,
Y.
Bai
,
L. D.
Yu
, and
Z. W.
Xu
, “
Laser cleaning of paint layers on white marble surface based on cooperative use of laser-induced breakdown spectroscopy and image binarization
,”
J. Cult. Heritage
62
,
124
133
(
2023
).
28.
J. P.
Singh
,
J. R.
Almirall
,
M.
Sabsabi
, and
A. W.
Miziolek
, “
Laser induced breakdown spectroscopy (LIBS)
,”
Anal. Bioanal. Chem.
400
,
3191
3192
(
2011
).
29.
M. S.
Majewski
,
C.
Kelley
,
W.
Hassan
,
W.
Brindley
,
E. H.
Jordan
, and
M. W.
Renfro
, “
Laser induced breakdown spectroscopy for contamination removal on engine-run thermal barrier coatings
,”
Surf. Coat. Technol.
205
,
4614
4619
(
2011
).
30.
L. D.
Yu
,
Y.
Bai
,
T. X.
Bian
,
Y. T.
Qu
,
Z. W.
Xu
,
Y.
Li
, and
H.
Zhang
, “
Influence of laser parameters on corrosion resistance of laser melting layer on C45E4 steel surface
,”
J. Manuf. Process.
91
,
1
9
(
2023
).
31.
C. Y.
Ouyang
,
Q. F.
Bai
,
X. G.
Yan
,
Z.
Chen
,
B. H.
Han
, and
Y.
Liu
, “
Microstructure and corrosion properties of laser cladding Fe-based alloy coating on 27SiMn steel surface
,”
Coatings
11
,
552
(
2021
).
32.
Z. M.
Shi
,
M.
Liu
, and
A.
Atrens
, “
Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation
,”
Corros. Sci.
52
,
579
588
(
2010
).
33.
Z. L.
Yu
,
Z. Z.
Xu
,
Y. T.
Guo
,
P. W.
Sha
,
R. Y.
Liu
,
R. L.
Xin
,
L. X.
Li
,
L. X.
Chen
,
X. B.
Wang
,
Z. H.
Zhang
, and
L. Q.
Ren
, “
Analysis of microstructure, mechanical properties, wear characteristics and corrosion behavior of SLM-NiTi under different process parameters
,”
J. Manuf. Process.
75
,
637
650
(
2022
).
34.
Y. X.
Chen
,
D. Y.
Lin
,
J. C.
Han
,
X. J.
Xia
,
Y. Y.
Chen
,
W. K.
Hao
,
B. K.
Yang
,
P. H.
Hu
,
S. F.
Chen
, and
Y. J.
Lu
, “
Corrosion susceptibility of different planes of AlMgScZr alloy produced by selective laser melting
,”
J. Manuf. Process.
84
,
240
250
(
2022
).
You do not currently have access to this content.