The operation of an optical neural network via feed-forward (FF) configuration is experimentally simulated in the laboratory. We test the FF setup using optical injection and examine the behavior of follower laser diodes (FLDs) subjected to chaotic modulation. The last two laser diodes are exposed to different weights of chaotic modulated signals through optical filtration and the angle of the influencer laser. We observe a maximum FWHM of 1.8 GHz for FLD at an angle (C) of 70° and a modulated signal attenuation of −12 dB. We calculate the correlation between the influencer lasers (ILDs) and FLDs to determine the synchronization state. Results indicate fluctuations between negative and positive values, with the best correlation value being −0.4. These results confirm antisynchronized ILD-FLDs, which is crucial for ensuring privacy in transmitting units within a chaotic optical communication system simulating an optical neural network.

1.
E. C.
Mos
, “
Optical neural network based on laser diode longitudinal modes
,” Ph.D. thesis, Technische Universiteit Eindhoven,
1999
.
2.
F.
Wu
,
H.
Gu
, and
Y.
Li
, “
Inhibitory electromagnetic induction current induces enhancement instead of reduction of neural bursting activities
,”
Commun. Nonlinear Sci. Numer. Simul.
79
,
104924
(
2019
).
3.
F.
Wu
and
H.
Gu
, “
Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns
,”
Int. J. Bifurcation Chaos
30
,
2030009
(
2020
).
4.
J.
Zhang
and
X.
Liao
, “
Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse
,”
AEU Int. J. Electron. Commun.
75
,
82
–90 (
2017
).
5.
F.
Xu
,
J.
Zhang
,
T.
Fang
,
S.
Huang
, and
M.
Wang
, “
Synchronous dynamics in neural system coupled with memristive synapse
,”
Nonlinear Dyn.
92
,
1395
1402
(
2018
).
6.
M.
Lv
,
J.
Ma
,
Y.
Yao
, and
F.
Alzahrani
, “
Synchronization and wave propagation in neuronal network under field coupling
,”
Sci. China Technol. Sci.
62
,
448
457
(
2019
).
7.
M. E.
Yamakou
, “
Chaotic synchronization of memristive neurons: Lyapunov function versus Hamilton function
,”
Nonlinear Dyn.
101
,
487
500
(
2020
).
8.
E. E.
Elsayed
and
B. B.
Yousif
, “
Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems
,”
Opt. Quantum Electron.
52
,
385
(
2020
).
9.
E. E.
Elsayed
,
B. B.
Yousif
, and
M.
Singh
, “
Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence
,”
Opt. Quantum Electron.
54
,
116
(
2022
).
10.
H.
Lin
,
C.
Wang
,
Q.
Deng
,
C.
Xu
,
Z.
Deng
, and
C.
Zhou
, “
Review on chaotic dynamics of memristive neuron and neural network
,”
Nonlinear Dyn.
106
,
959
973
(
2021
).
11.
H.
Lin
and
C.
Wang
, “
Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network
,”
Appl. Math. Comput.
369
, 124840 (
2020
).
12.
V. T.
Pham
,
S.
Jafari
,
S.
Vaidyanathan
,
C.
Volos
, and
X.
Wang
, “
A novel memristive neural network with hidden attractors and its circuitry implementation
,”
Sci. China Technol. Sci.
59
,
358
363
(
2016
).
13.
Z. T.
Njitacke
,
I. S.
Doubla
,
S.
Mabekou
, and
J.
Kengne
, “
Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation
,”
Chaos, Solitons Fractals
137
,
109785
(
2020
).
14.
Y.
Yu
,
M.
Shi
,
H.
Kang
,
M.
Chen
, and
B.
Bao
, “
Hidden dynamics in a fractional-order memristive Hindmarsh–Rose model
,”
Nonlinear Dyn.
100
,
891
906
(
2020
).
15.
H.
Lin
,
C.
Wang
,
Q.
Hong
, and
Y.
Sun
, “
A multi-stable memristor and its application in a neural network
,”
IEEE Trans. Circuits Syst. II
67
,
3472
–3476 (
2020
).
16.
H.
Bao
,
W.
Liu
, and
M.
Chen
, “
Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit
,”
Nonlinear Dyn.
96
,
1879
1894
(
2019
).
17.
D.
Zhang
and
Z.
Tan
, “
A review of optical neural networks
,”
Appl. Sci.
12
, 11-5338 (
2022
).
18.
Y.
Alloun
,
M. S.
Azzaz
, and
A.
Kifouche
, “
A new approach based on artificial neural networks and chaos for designing deterministic random number generator and its application in image encryption
,”
Multimed. Tools Appl.
1
, 1–36 (
2024
).
19.
L.
Lu
,
P.
Jin
,
G.
Pang
,
Z.
Zhang
, and
G. E.
Karniadakis
, “
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
,”
Nat. Mach. Intell.
3
,
218
229
(
2021
).
20.
X.
Fan
,
X.
Mao
,
L.
Wang
,
S.
Fu
,
A.
Wang
, and
Y.
Wang
, “
Improving decryption quality of optical chaos communication using neural networks
,”
Opt. Lett.
49
,
4445
–4448 (
2024
).
21.
D. R.
Madhloom
,
A. A.
Hemed
, and
S. M.
Khorshed
, “
Effect of feed-forward in chaotic synchronization matching between master laser diode and two slaves
,”
J. Opt.
1
, 1–15 (
2024
).
22.
M. M.
Jaber
and
A. A.
Hemed
, “
The chaotic behavior of an optical artificial neuron
,”
Fiber Integr. Opt.
1
, 1–26 (
2024
).
23.
E.
Cohen
,
D.
Malka
,
A.
Shemer
,
A.
Shahmoon
,
Z.
Zalevsky
, and
M.
London
, “
Neural networks within multi-core optic fibers
,”
Sci. Rep.
6
,
29080
(
2016
).
24.
D. R.
Madhloom
,
A. A.
Hemed
, and
S. M.
Khorsheed
, “
Experimental simulation for two optically filtered modulation weights in laser diode as a self-learning layer
,”
East Eur. J. Phys.
2023
,
267
276
(
2023
).
25.
A.
Hemed
,
R.
Abbas
, and
M.
Fdhala
, “
Optimization for chaotic synchronization in a laser diode network by hybrid feedback and unidirectional injection
,”
Optoelectron. Adv. Mater. Rapid Commun.
18
,
120
–133 (
2024
).
26.
D. H.
Nguyen
and
B.
Widrow
, “
Neural networks for self-learning control systems
,”
IEEE Control Syst. Mag.
10
,
18
23
(
1990
).
27.
S. A.
Linok
and
D. A.
Yudin
, “
Influence of neural network receptive field on monocular depth and ego-motion estimation
,”
Opt. Memory Neural Netw.
32
,
S206
S213
(
2023
).
28.
F. P.
Sunny
,
E.
Taheri
,
M.
Nikdast
, and
S.
Pasricha
, “
A survey on silicon photonics for deep learning
,”
ACM J. Emerg. Technol. Comput. Syst.
17
,
1
57
(
2021
).
29.
M. J.
Weber
,
Handbook of Lasers
(
CRC Press
, London,
2000
).
30.
K.
Kikuchi
,
T.
Okoshi
,
M.
Nagamatsu
, and
N.
Henmi
, “
Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator
,”
J. Lightwave Technol.
2
,
1024
1033
(
1984
).
31.
Z.
Liu
,
J.-Y.
Kim
,
D. S.
Wu
,
D. J.
Richardson
, and
R.
Slavik
, “
Homodyne OFDM with optical injection locking for carrier recovery
,”
J. Lightwave Technol.
33
,
34
41
(
2015
).
32.
J.
El-Azab
and
M.
Hemdan
, in
2013 High Capacity Optical Networks and Emerging/Enabling Technologies, HONET-CNS
, Magosa, Cyprus, December 2013 (IEEE,
2013
), Vol.
2013
, p.
55
.
33.
Y. S.
Neo
,
S. M.
Idrus
,
M. F.
Rahmat
,
S. E.
Alavi
, and
I. S.
Amiri
, “
Adaptive control for laser transmitter feedforward linearization system
,”
IEEE Photonics J.
6
,
1
10
(
2014
).
34.
Z. R.
Ghayib
and
A. A.
Hemed
, “
Smart control for the chaotic dynamics using two regions uniform fiber Bragg grating
,”
Optoelectron. Adv. Mater Rapid Commun.
16
,
307
–318 (
2022
).
35.
T.
Ismail
,
C. P.
Liu
,
J. E.
Mitchell
, and
A. J.
Seeds
, “
High-dynamic-range wireless-over-fiber link using feedforward linearization
,”
J. Lightwave Technol.
25
,
3274
3282
(
2007
).
36.
A.
Hemed
,
M. M.
Fdhala
, and
S. M.
Khorsheed
, “
Modified superstructure fiber Bragg grating for a filter application
,”
Kuwait J. Sci.
49
, 1–18 (
2022
).
37.
R.
Ulrich
and
A.
Simon
, “
Polarization optics of twisted single-mode fibers
,”
Appl. Opt.
18
,
2241
–2251 (
1979
).
38.
A. L.
Fradkov
,
R. J.
Evans
, and
B. R.
Andrievsky
, “
Control of chaos: Methods and applications in mechanics
,”
Philos. Trans. R Soc. A
364
,
2279
2307
(
2006
).
39.
Z.
Sun
, “
Wearable glove gesture recognition based on fiber Bragg grating sensing using genetic algorithm-back propagation neural network
,”
Opt. Fiber Technol.
87
,
103874
(
2024
).
40.
Z.
Liu
and
R.
Slavik
, “
Optical injection locking: From principle to applications
,”
J. Lightwave Technol.
38
,
43
59
(
2020
).
41.
L.
Minati
,
H.
Ito
,
A.
Perinelli
,
L.
Ricci
,
L.
Faes
,
N.
Yoshimura
,
Y.
Koike
, and
M.
Frasca
, “
Connectivity influences on nonlinear dynamics in weakly-synchronized networks: Insights from Rössler systems, electronic chaotic oscillators, model and biological neurons
,”
IEEE Access
7
,
174793
174821
(
2019
).
42.
G. P. Agrawal,
Fiber-Optic Communications Systems
, 3rd ed. (John Wiley & Sons, Hoboken,
2002
).
43.
G. P.
Agrawal
,
Nonlinear Fiber Optics
(
Springer
, Berlin Heidelberg,
2000
), pp.
195
.
44.
G. R.
Fowles
and
G. L.
Cassiday
,
Analytical Mechanics
(
Cengage Learning Indian Pvt. Ltd.
, Noida, India,
2016
).
45.
S.
Ortin
,
L.
Pesquera
,
A.
Cofino
,
A.
Valle
, and
J. M.
Gutierrez
, “
Extraction of nonlinear dynamics for laser diodes with feedback in chaotic regime
,”
Semicond. Lasers Laser Dyn.
5452
,
273
–282 (
2004
).
46.
S. L.
Yan
, “
Period-control and chaos-anti-control of a semiconductor laser using the twisted fiber
,”
Chin. Phys. B
25
, 090504 (
2016
).
47.
J.
Ohtsubo
, “
Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback
,”
IEEE J. Quantum Electron.
38
,
1141
1154
(
2002
).
48.
S.
Sivaprakasam
,
I.
Pierce
,
P.
Rees
,
P. S.
Spencer
,
K. A.
Shore
, and
A.
Valle
, “
Inverse synchronization in semiconductor laser diodes
,”
Phys. Rev. A
64
, 013805 (
2001
).
49.
S. N.
Sarbadhikari
and
K.
Chakrabarty
, “
Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization
,”
Med. Eng. Phys.
23
,
447
457
(
2001
).
Published under a nonexclusive license by Laser Institute of America.
You do not currently have access to this content.