Marine centrifugal pumps are important mechanical equipment widely used in ships, but they are often damaged due to cavitation. In this paper, a Co-based coating was prepared on the surface of a substrate via laser cladding technology. The microstructure characteristics and phase composition of the coating were analyzed by an optical microscope (OM), a scanning electron microscope (SEM), and an x-ray diffractometer. Ultrasonic vibration cavitation tests were used to test the cavitation erosion resistance of the coating in NaCl solutions with different concentrations (0, 2.5, and 3.5 wt. %).The experimental results showed that the coating is mainly composed of γ-Co, (Co,W)6C, and Cr23C6. After 12 h of cavitation testing in different concentrations of NaCl solution, the Co-based coating exhibited better anti-cavitation performance than the 316 stainless steel substrate. The corrosion rate of the Co-based coating was significantly lower than that of the 316 stainless steel substrate. In addition, the experimental results also showed that the higher the concentration of NaCl, the faster the weight loss rate of the Co-based coating and the more pronounced the degree of surface cavitation. Although a dense oxide protective layer is easily formed on the surface of the Co-based coating and effectively inhibits the further erosion of the corrosive medium, with the increase in the concentration of NaCl solution, the erosion by chloride ions is more likely to destroy the dense protective layer and formed cavitation holes.

1.
Y.
Zhang
and
C. C.
Song
, “
A novel design of centrifugal pump impeller for hydropower station management on multi-objective inverse optimization
,”
Processes
11
,
3335
(
2023
).
2.
C.
Wang
,
Y. L.
Yao
,
Y.
Yang
,
X. G.
Chen
,
H.
Wang
,
J.
Ge
, and
Q. Q.
Zhang
, “
Automatic optimization of centrifugal pump for energy conservation and efficiency enhancement based on response surface methodology and computational fluid dynamics
,”
Eng. Appl. Comput. Fluid Mach.
17
,
2227686
(
2023
).
3.
A.
Eljersifi
,
A.
Chbihi
,
N.
Semlal
,
H.
Bouaouine
, and
S.
Naamane
, “
Design and performance of a novel closed-loop erosion-corrosion tester
,”
Tribol. Int.
190
,
109029
(
2023
).
4.
P.
Shab
,
M. A.
Ganesh
, and
T. K.
Raj
, “
Design and analysis of airfoil-shaped impeller blades of centrifugal pump
,”
J. Appl. Mech. Mater.
852
,
539
544
(
2016
).
5.
D. C.
Wang
,
B. W.
Gao
,
Y. Z.
Chen
,
Y. F.
Pan
,
J. P.
Luo
,
L.
Liu
,
Q.
Wei
, and
L. J
,
Liu
, “
Effects of matching between the inducer and the impeller of a centrifugal pump on its cavitation performance
,”
Machines
11
,
142
(
2023
).
6.
L.
Chen
,
L. J.
Wei
,
Y.
Wang
,
J. S.
Wang
, and
W. L.
Li
, “
Monitoring and predictive maintenance of centrifugal pumps based on smart sensors
,”
Sensors
22
,
2106
(
2022
).
7.
K. K.
Mckee
,
G. L.
Forbes
,
I.
Mazhar
,
R.
Entwistle
,
M.
Hodkiewicz
, and
I.
Howard
, “
A vibration cavitation sensitivity parameter based on spectral and statistical methods
,”
Expert Syst. Appl.
42
,
67
78
(
2015
).
8.
V.
Bilous
,
A.
Voevodin
,
V. M.
Khoroshikh
,
V. M.
Nosov
,
G. I.
Marinin
,
S. O.
Leonov
,
V. D.
Ovcharenko
,
V. I.
Kovalenko
,
A. A.
Komar
,
A. S.
Kuprin
, and
L. O.
Shpagina
, “
Experimental equipment and basic technological methods of obtaining cavitation protective coatings on working surfaces of steam turbine blades made of titanium alloy VT6 in order to replace imports of similar products
,”
Nauka Innovacii
12
,
27
37
(
2016
).
9.
S.
Genna
,
C.
Leone
,
E.
Mingione
, and
G.
Rubino
, “
Surface treatments for the improvement of mechanical and cavitation resistance of Al 6082 alloy
,”
Int. J. Adv. Manuf. Technol.
129
,
5149
5165
(
2023
).
10.
Z.
Blednova
,
D.
Dmitrenko
, and
E.
Balaev
, “
Cavitation resistance of surface composition steel-Ni-TiNi-TiNiZr-cBNCo, formed by high-velocity oxygen-fuel spraying
,”
IOP Conf. Ser.:Mater. Sci. Eng.
295
,
012029
(
2018
).
11.
Y. D.
Li
,
C. S.
Lin
,
B. G.
Murengami
,
C. Y.
Tang
, and
X. Y.
Chen
, “
Analyses and research on a model for effective thermal conductivity of laser-clad composite
,”
Materials
16
,
7360
(
2023
).
12.
F.
Wang
,
G. H.
Li
,
M.
Liu
,
D. C.
Wang
,
D.
Yan
, and
J. X.
Fan
, “
Acquisition of heterogeneous constitutive relationship of Ni60 laser cladding layer based on nano-indentation experiment
,”
Mater. Today Commun.
34
,
105049
(
2023
).
13.
W.
Zhang
,
X. H.
Shang
,
M. L.
Hu
,
X.
He
,
B.
Yang
,
K. J.
Dai
, and
C. F.
Dong
, “
Microstructure and corrosion-wear behaviors for laser cladding repaired martensitic stainless steels using Co-based and Ni-based powders
,”
Mater. Today. Commun.
35
,
106287
(
2023
).
14.
T.
Izumi
and
M.
Arai
, “
Numerical simulation of the 3D propeller repair process by laser cladding of SUS316L on SUS304
,”
J. Manuf. Processes
98
,
234
253
(
2023
).
15.
M. Z.
Ge
,
Y.
Tang
,
Y. K.
Zhang
, and
Y.
Wang
, “
Enhancement in fatigue property of Ti-6Al-4 V alloy remanufactured by combined laser cladding and laser shock peening processes
,”
Surf. Coat. Technol.
444
,
128671
(
2022
).
16.
R.
Singh
,
D.
Kumar
,
S. K.
Mishra
, and
S. K.
Tiwari
, “
Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance
,”
Surf. Coat. Technol.
251
,
87
97
(
2014
).
17.
M.
Kiehl
,
A.
Scheid
,
K.
Graf
,
B.
Ernst
, and
U.
Tetzlaff
, “
Coaxial laser cladding of cobalt-base alloy StelliteTM 6 on gray cast iron/investigations on friction, wear versus commercial brake pad, and corrosion characteristics
,”
Proc. Inst. Mech. Eng., Part D
237
,
3285
3303
(
2023
).
18.
F.
Rosalbino
and
G.
Scavino
, “
Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environment
,”
Electrochim. Acta
111
,
656
662
(
2013
).
19.
K.
Qi
and
L.
Jiang
, “
Magnetic field-assisted laser cladding of cobalt-based alloy on 300 M steel
,”
JOM
76
,
238
249
(
2024
).
20.
B. K.
Peng
,
Z. X.
Yu
,
H. D.
Chen
,
K. X.
Liao
,
Y. C.
Guo
,
J. L.
Tang
, and
H. J.
Wen
, “
Boron nitride and ZIF-67 composite material to improve the long term corrosion resistance of epoxy resin coating
,”
Diam. Relat. Mater.
139
,
110299
(
2023
).
21.
E. N.
Nur
and
B. A.
Başyiğit
, “
investigating thermal shock and corrosion resistance of inconel 601 super alloy after thermal barrier coating with %8 YSZ powder
,”
Mater. Today Commun.
36
,
106516
(
2023
).
22.
R.
Sougata
,
S.
Niyanth
,
C.
Ercan
, and
G.
Hamed
, “
Post weld heat treatment and operating temperature effect on tribological behavior of laser cladded Stellite 21 coating
,”
Wear
482–483
,
203990
(
2021
).
23.
K.
Ali
,
T.
Morteza
, and
F.
Mahmound
, “
Laser cladding of Inconel 713 LC with Stellite 31 powder: Statistical modeling and optimization
,”
Laser Phys.
31
,
9
(
2021
).
24.
R. A.
Seraj
,
A.
Abdollah-zadeh
,
S.
Dosta
,
H.
Canales
,
H.
Assadi
, and
I.
Garcia Cano
, “
The effect of traverse speed on deposition efficiency of cold sprayed Stellite 21
,”
Surf. Coat. Technol.
366
,
24
34
(
2019
).
25.
X.
Wen
,
S.
Liu
,
X.
Gao
,
B.
Zhang
,
Y.
Wang
,
Y.
Chen
,
S.
Qiao
,
F.
Wang
,
N.
Li
,
Y.
Shi
, and
C.
Yuan
, “
Investigation of microstructure and mechanical properties in dissimilar-metal welding between ferritic stainless steel and Co-based superalloy using electron beam welding
,”
J. Mater. Res. Technol.
26
,
5177
5192
(
2023
).
26.
S.
Zhang
,
C. L.
Wu
,
J.
Liu
,
C. H.
Zhang
, and
J. Z.
Tan
, “
Laser cladding of Co-based alloy on 316 stainless steel
,”
Adv. Mater. Res.
941–944
,
2198
2201
(
2014
).
27.
Y. P.
Ding
,
R.
Liu
,
J. H.
Yao
,
Q. L.
Zhang
, and
L.
Wang
, “
Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces
,”
Surf. Coat. Technol.
329
,
97
108
(
2017
).
28.
N.
Jeyaprakash
,
C.-H.
Yang
, and
S.
Sivasankaran
, “
Laser cladding process of cobalt and nickel based hard-micron-layers on 316L-stainless-steel-substrate
,”
Mater. Manuf. Processes
35
,
142
151
(
2020
).
29.
Z. Y.
Yang
,
Y. G.
Jian
,
Z. H.
Chen
,
H. G.
Qi
,
Z. F.
Huang
,
G. S.
Huang
, and
J.
Xing
, “
Microstructure, hardness and slurry erosion-wear behaviors of high-speed laser cladding Stellite 6 coatings prepared by the inside-beam powder feeding method
,”
J. Mater. Res. Technol.
19
,
2596
2610
(
2022
).
30.
K.
Pankaj
,
S. M.
Sawant
, and
J. N.
Kumar
, “
Optimization of process parameters in micro-plasma transferred arc deposition process for cobalt-based alloy
,”
Mater. Today: Proc.
44
,
1681
1686
(
2021
).
You do not currently have access to this content.