Monitoring humidity and temperature is critical for many applications, including enhancing food production in greenhouses and open farms. This demands for environmentally friendly, cost-effective, and biocompatible sensors. Paper-based sensors meet these requirements as they are cost-effective, eco-friendly, and adaptable to varying agricultural conditions due to their affordability, biodegradability, and flexibility. This research developed printed capacitance-based humidity and resistance-based temperature sensors using a dry additive nanomanufacturing technique on four distinct types of commercially available uncoated paper substrates. Based on the principles of a capacitor and resistor, humidity and temperature sensors were fabricated by printing silver interdigitated electrodes on papers with varying solubility and thicknesses to measure the humidity absorption capability and the printed silver electrode’s response to temperature change. The sensors successfully detected the changes in relative humidity levels from 20 to 90% and temperature variations from 25 to 50 °C. The humidity and temperature sensors developed in this study have strong implications for use in smart agricultural applications, food supply, food storage, and preservation. Since these sensors are affordable, biodegradable, and environmentally friendly, they can be intended for one- or two-time applications and safely disposed of after use.

1.
G.
Lee
,
O.
Hossain
,
S.
Jamalzadegan
,
Y.
Liu
,
H.
Wang
,
A. C.
Saville
, and
Q.
Wei
,
T.
Shymanovich
,
R.
Paul
,
D.
Rotenberg
,
A. E.
Whitfield
,
J. B.
Ristaino
,
Y.
Zhu
, “
Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring
,”
Sci. Adv.
9
,
eade2232
(
2023
).
2.
M.
Kumar
, “
Impact of climate change on crop yield and role of model for achieving food security
,”
Environ. Monit. Assess.
188
,
1
14
(
2016
).
3.
J. M.
Nassar
,
S. M.
Khan
,
D. R.
Villalva
,
M. M.
Nour
,
A. S.
Almuslem
, and
M. M.
Hussain
, “
Compliant plant wearables for localized microclimate and plant growth monitoring
,”
npj Flex. Electron.
2
,
24
(
2018
).
4.
X.-F.
Jin
,
C. R. L.
Liu
,
Y.
Zhang
,
X. J.
Zhang
,
Y. M.
Chen
, and
J. J.
Chen
, “
Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing
,”
Sens. Actuators, A
316
,
112388
(
2020
).
5.
J.-K.
Park
,
T. G.
Kang
,
B. H.
Kim
,
H. J.
Lee
,
H. H.
Choi
, and
J. G.
Yook
, “
Real-time humidity sensor based on microwave resonator coupled with PEDOT: PSS conducting polymer film
,”
Sci. Rep.
8
,
439
(
2018
).
6.
X.
Le
,
Y.
Liu
,
L.
Peng
,
J.
Pang
,
Z.
Xu
,
C.
Gao
, and
J.
Xie
, “
Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension
,”
Microsyst. Nanoeng.
5
,
36
(
2019
).
7.
M.
Tekcin
,
D. R.
Tuzer Hamzaoglu
, and
S.
Kursun
, “
Flexible humidity sensor for smart agricultural applications
,”
Flex. Print. Electron.
8
,
035003
(
2023
).
8.
T.
Delipinar
,
A.
Shafique
,
M. S.
Gohar
, and
M. K.
Yapici
, “
Fabrication and materials integration of flexible humidity sensors for emerging applications
,”
ACS Omega
6
,
8744
8753
(
2021
).
9.
R.
Akram
,
M.
Saleem
,
Z.
Farooq
,
M.
Yaseen
,
Z. M.
Almohaimeed
, and
Q.
Zafar
, “
Integrated capacitive-and resistive-type bimodal relative humidity sensor based on 5, 10, 15, 20-tetraphenylporphyrinatonickel (II)(TPPNi) and zinc oxide (ZnO) nanocomposite
,”
ACS Omega
7
,
30590
30600
(
2022
).
10.
P.
Lall
,
S.
Bimali
,
J.
Narangaparambil
, and
S.
Miller
, “
Component attach process recipe and performance on aerosol printed sustainable silver ink
,” in
International Electronic Packaging Technical Conference and Exhibition
, San Diego, CA, October 24–26 (
American Society of Mechanical Engineers
, New York, NY,
2023
).
11.
D.
Barmpakos
and
G. J. S.
Kaltsas
, “
A review on humidity, temperature and strain printed sensors—Current trends and future perspectives
,”
Sensors
21
,
739
(
2021
).
12.
T.
Kojić
,
G. M.
Stojanović
,
A.
Miletić
,
M.
Radovanović
,
H.
Al-Salami
, and
F.
Arduini
, “
Testing and characterization of different papers as substrate material for printed electronics and application in humidity sensor
,”
Sens. Mater.
31
,
2981
2995
(
2019
).
13.
H.
Andersson
,
A.
Manuilskiy
,
T.
Unander
,
C.
Lidenmark
,
S.
Forsberg
, and
H. E.
Nilsson
, “
Inkjet printed silver nanoparticle humidity sensor with memory effect on paper
,”
IEEE Sens. J.
12
,
1901
1905
(
2012
).
14.
P.
Lall
,
S.
Bimali
, and
S.
Miller
, “
Reparability test of aerosol-jet printed sustainable silver ink circuit
,” in
International Electronic Packaging Technical Conference and Exhibition
, San Diego, CA, October 24–26 (
American Society of Mechanical Engineers
,
New York, NY
,
2023
).
15.
A.
Rivadeneyra
,
J.
Fernández-Salmerón
,
M.
Agudo
,
J. A.
López-Villanueva
,
L. F.
Capitan-Vallvey
, and
A. J.
Palma
, “
Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing
,”
Sens. Actuators, B
195
,
123
131
(
2014
).
16.
J.
Courbat
,
Y. B.
Kim
,
D.
Briand
, and
N. F.
De Rooij
, “
Inkjet Printing on Paper for the Realization of Humidity and Temperature Sensors
,” in
2011 16th International Solid-State Sensors, Actuators and Microsystems Conference
, Beijing, China, June 5–9 (
IEEE
,
2011
).
17.
T. H.
Phung
,
A. N.
Gafurov
,
I.
Kim
,
S. Y.
Kim
,
K. M.
Kim
, and
T. M.
Lee
, “
Hybrid device fabrication using roll-to-roll printing for personal environmental monitoring
,”
Polymers
15
,
2687
(
2023
).
18.
E.
Davoodi
,
H.
Fayazfar
,
F.
Liravi
,
E.
Jabari
, and
E.
Toyserkani
, “
Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices
,”
Add. Manuf.
32
,
101016
(
2020
).
19.
Q.
Qi
,
T.
Zhang
,
Q.
Yu
,
R.
Wang
,
Y.
Zeng
,
L.
Liu
, and
H.
Yang
, “
Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing
,”
Sens. Actuators, B
133
,
638
643
(
2008
).
20.
P.
Lall
,
S.
Bimali
,
V.
Soni
, and
S.
Miller
, “
Process recipes of additively printed sustainable silver-ink using aerosol jet printing
,” in
2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Orlando, FL, 30 May–2 June (
IEEE
,
2023
).
21.
S.
Kim
,
B.
Cook
,
T.
Le
,
J.
Cooper
,
H.
Lee
,
V.
Lakafosis
,
R.
Vyas
,
R.
Moro
,
M.
Bozzi
,
A.
Georgiadis
,
A.
Collado
, and
M. M.
Tentzeris
, “
Inkjet-printed antennas, sensors and circuits on paper substrate
,”
IET Microw. Antennas Propag.
7
,
858
868
(
2013
).
22.
A.
Määttänen
,
U.
Vanamo
,
P.
Ihalainen
,
P.
Pulkkinen
,
H.
Tenhu
,
J.
Bobacka
, and
J.
Peltonen
, “
A low-cost paper-based inkjet-printed platform for electrochemical analyses
,”
Sens. Actuators, B
177
,
153
162
(
2013
).
23.
H.
Tai
,
Z.
Duan
,
Y.
Wang
,
S.
Wang
, and
Y.
Jiang
, “
Paper-based sensors for gas, humidity, and strain detections: A review
,”
ACS Appl. Mater. Interfaces
12
,
31037
31053
(
2020
).
24.
Z.
Duan
,
Y.
Jiang
,
M.
Yan
,
S.
Wang
,
Z.
Yuan
,
Q.
Zhao
,
P.
Sun
,
G.
Xie
,
X.
Du
, and
H.
Tai
, “
Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications
,”
ACS Appl. Mater. Interfaces
11
,
21840
21849
(
2019
).
25.
K. H. S.
Karimov
,
M. M.
Ahmed
,
Z. M.
Karieva
,
M.
Saleem
,
A.
Mateen
, and
S. A.
Moiz
, “
Humidity sensing properties of carbon nano-tube thin films
,”
Sens. Lett.
9
,
1649
1653
(
2011
).
26.
X.
Zhang
,
D.
He
,
Q.
Yang
, and
M. Z.
Atashbar
, “
Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor
,”
Chem. Eng. J.
433
,
133751
(
2022
).
27.
K.
Thiyagarajan
,
G. K.
Rajini
, and
D.
Maji
, “
Flexible, highly sensitive paper-based screen printed MWCNT/PDMS composite breath sensor for human respiration monitoring
,”
IEEE Sens. J.
21
,
13985
13995
(
2021
).
28.
İ
Solak
,
Ş
Gençer
,
B.
Yıldırım
,
E.
Öznur
,
D.
Hah
, and
K.
Icoz
, “
Respiration monitoring using a paper-based wearable humidity sensor, a step forward to clinical tests
,”
Sens. Actuators, A
355
,
114316
(
2023
).
29.
X.
Chen
,
Y.
Li
,
X.
Wang
, and
H.
Yu
, “
Origami paper-based stretchable humidity sensor for textile-attachable wearable electronics
,”
ACS Appl. Mater. Interfaces
14
,
36227
36237
(
2022
).
30.
X.
Aeby
,
J.
Bourely
,
A.
Poulin
,
G.
Siqueira
,
G.
Nyström
, and
D.
Briand
, “
Printed humidity sensors from renewable and biodegradable materials
,”
Adv. Mater. Technol.
8
,
2201302
(
2023
).
31.
V. S.
Turkani
,
D.
Maddipatla
,
B. B.
Narakathu
,
T. S.
Saeed
,
S. O.
Obare
,
B. J.
Bazuin
, and
M. Z.
Atashbar
, “
A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application
,”
Nanoscale Adv.
1
,
2311
2322
(
2019
).
32.
S.
Malik
,
M.
Ahmad
,
M.
Punjiya
,
A.
Sadeqi
,
M. S.
Baghini
, and
S.
Sonkusale
, “
Respiration Monitoring Using a Flexible Paper-Based Capacitive Sensor
,” in
2018 IEEE Sensors
, New Delhi, India, October 28–31 (
IEEE
,
2018
).
33.
F.
Le Goupil
,
G.
Payrot
,
S.
Khiev
,
W.
Smaal
, and
G.
Hadziioannou
, “
Fully printed sensors for in situ temperature, heat flow, and thermal conductivity measurements in flexible devices
,”
ACS Omega
8
,
8481
8487
(
2023
).
34.
V. S.
Turkani
,
B. B.
Narakathu
,
D.
Maddipatla
,
B. N.
Altay
,
P. D.
Fleming
,
B. J.
Bazuin
, and
M. Z.
Atashbar
, “
Nickel Based Printed Resistance Temperature Detector on Flexible Polyimide Substrate
,” in
2018 IEEE Sensors
, New Delhi, India, October 28–31 (
IEEE
,
2018
).
35.
Z.
Ahmadi
,
S.
Lee
,
R. R.
Unocic
,
N.
Shamsaei
, and
M.
Mahjouri-Samani
, “
Additive nanomanufacturing of multifunctional materials and patterned structures: A novel laser-based dry printing process
,”
Adv. Mater. Technol.
6
,
2001260
(
2021
).
36.
Z.
Ahmadi
,
S.
Lee
,
A.
Patel
,
R. R.
Unocic
,
N.
Shamsaei
, and
M.
Mahjouri-Samani
, “
Dry printing and additive nanomanufacturing of flexible hybrid electronics and sensors
,”
Adv. Mater. Interfaces
9
,
2102569
(
2022
).
37.
Z.
Ahmadi
,
A.
Patel
,
A.
Taba
,
S.
Jaiswal
,
S.
Lee
,
N.
Shamsaei
, and
M.
Mahjouri-Samani
, “
Inkless multimaterial printing flexible electronics by directed laser deposition at nano-and microscale
,”
ACS Appl. Nano Mater.
6
,
13965
13973
(
2023
).
38.
Z.
Ahmadi
,
A.
Patel
,
C.
Hill
,
S. R.
Peeples
,
J. M.
Jones
,
M. G.
Boebinger
, and
M.
Mahjouri-Samani
, “
Dry printing pure copper with high conductivity and adhesion for flexible electronics
,”
ACS Appl. Electron. Mater.
6
,
3933
3940
(
2024
).
39.
S.
Jaiswal
,
P.
Fathi-Hafshejani
,
B.
Yakupoglu
,
M. G.
Boebinger
,
N.
Azam
,
R. R.
Unocic
,
M. C.
Hamilton
, and
M.
Mahjouri-Samani
, “
Wafer-Scale synthesis of 2D materials by an amorphous phase-mediated crystallization approach
,”
ACS Appl. Mater. Interfaces
15
,
39697
39706
(
2023
).
40.
S.
Elafandi
,
Z.
Ahmadi
,
N.
Azam
, and
M.
Mahjouri-Samani
, “
Gas-phase formation of highly luminescent 2D GaSe nanoparticle ensembles in a nonequilibrium laser ablation process
,”
Nanomaterials
10
,
908
(
2020
).
41.
A.
Taba
,
Z.
Ahmadi
,
A.
Patel
,
P.
Fathi-Hafshejani
,
S.
Lee
,
S.
Shao
,
M. C.
Hamilton
,
N.
Shamsaei
, and
M.
Mahjouri-Samani
, “
Dry-printing conductive circuit traces on water-soluble papers
,”
ACS Sustainable Chem. Eng.
11
,
16407
16416
(
2023
).
42.
A.
Taba
,
A.
Patel
, and
M.
Mahjouri-Samani
, “
Dry printing fully functional eco-friendly and disposable transient papertronics
,”
Flex. Print. Electron.
9
,
035008
(
2024
).
43.
X.
Zhao
,
X.
Chen
,
X.
Yu
,
X.
Ding
,
X.
Yu
, and
K.
Tang
, “
High sensitivity humidity sensor and its application in nondestructive testing for wet paper
,”
Sens. Actuators, B
301
,
127048
(
2019
).
44.
R.
Alrammouz
,
J.
Podlecki
,
A.
Vena
,
R.
Garcia
,
P.
Abboud
,
R.
Habchi
, and
B.
Sorli
, “
Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate
,”
Sens. Actuators, B
298
,
126892
(
2019
).
45.
S.
Ali
,
A.
Hassan
,
G.
Hassan
,
J.
Bae
, and
C. H.
Lee
, “
All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity
,”
Carbon
105
,
23
32
(
2016
).
46.
R.
Akram
,
M.
Yaseen
,
Z.
Farooq
,
A.
Rauf
,
Z. M.
Almohaimeed
,
M.
Ikram
, and
Q.
Zafar
, “
Capacitive and conductometric type dual-mode relative humidity sensor based on 5, 10, 15, 20-tetra phenyl porphyrinato nickel (II)(TPPNi)
,”
Polymers
13
,
3336
(
2021
).
47.
T.
Islam
and
M. Z. U.
Rahman
, “
Investigation of the electrical characteristics on measurement frequency of a thin-film ceramic humidity sensor
,”
IEEE Trans. Instrum. Meas.
65
,
694
702
(
2016
).
48.
R.
Bollström
,
F.
Pettersson
,
P.
Dolietis
,
J.
Preston
,
R.
Österbacka
, and
M.
Toivakka
, “
Impact of humidity on functionality of on-paper printed electronics
,”
Nanotechnology
25
,
094003
(
2014
).
49.
M.
Tursunniyaz
,
V.
Agarwal
,
A.
Meredith
, and
J.
Andrews
, “
Hybrid nanomaterial inks for printed resistive temperature sensors with tunable properties to maximize sensitivity
,”
Nanoscale
15
,
162
170
(
2022
).
50.
S.
Khan
,
M.
Zahoor
,
R. S.
Khan
,
M.
Ikram
, and
N. U.
Islam
, “
The impact of silver nanoparticles on the growth of plants: The agriculture applications
,”
Heliyon
9
, e16928 (
2023
).
You do not currently have access to this content.