This study investigates the fabrication of blind holes in Inconel 718 alloy using a quasi-continuous wave (QCW) laser under varying pulse numbers. The geometric features, spatter formation, inner wall morphology, and microstructures of the drilled holes were systematically analyzed. Experimental results demonstrate that increasing the number of laser pulses from 1 to 13 significantly improves the hole depth, ranging from 565.09 to 3952.54 μm, achieving a maximum depth-to-diameter ratio of 9.5. Shallow holes exhibited optimal morphology with clean edges and smooth inner walls, whereas deeper holes displayed a composite structure consisting of inverted cone (upper), cylindrical (middle), and spindle-shaped (lower) sections. The thickness of the recast layer increased along the depth as the pulse numbers rose. Microstructural analysis revealed that the recast layer contained refined grains, with kernel average misorientation analysis indicating high residual stress within this layer. The hardness of the recast layer, measured at 2.13 GPa, was notably lower than that of the base material (4.49 GPa), primarily due to the depletion of the strengthening phase and the formation of the Laves phase. This work provides an in-depth understanding of the characteristics and mechanisms of QCW laser drilling in Inconel 718 alloy, offering valuable insights to optimize the laser processing parameters for industrial applications.

1.
R. J.
Smith
,
G. J.
Lewi
, and
D. H.
Yates
, “
Development and application of nickel alloys in aerospace engineering
,”
Aircr. Eng.
73
,
138
147
(
2001
).
2.
G.
Gudivada
and
A. K.
Pandey
, “
Recent developments in nickel-based superalloys for gas turbine applications: Review
,”
J. Alloys Compd.
963
,
171128
(
2023
).
3.
R.
Fan
,
X.
Mei
, and
J.
Cui
, “
Process in laser drilling of deep microholes without taper on metal materials
,”
Sci. China: Technol. Sci.
67
,
37
59
(
2024
).
4.
T.
Wei
,
S.
Sun
,
F.
Zhang
,
X.
Wang
,
P.
Wang
,
X.
Liu
, and
Q.
Wang
, “
A review on laser drilling optimization technique: Parameters, methods, and physical-field assistance
,”
Int. J. Adv. Manuf. Technol.
131
,
5691
5710
(
2024
).
5.
H.
Zhang
,
J.
Di
,
M.
Zhou
, and
Y.
Yan
, “
A comparison in laser precision drilling of stainless steel 304 with nanosecond and picosecond laser pulses
,”
Chin. J. Mech. Eng.
27
,
972
977
(
2014
).
6.
R.
Witte
,
T.
Moser
,
R.
Liebers
, and
R.
Holtz
, “
Laser micro-drilling with nanoseconds: Parametrical influences and results
,”
Proc. SPIE
7022
,
702208
(
2008
).
7.
H. K.
Tönshoff
,
C.
Momma
,
A.
Ostendorf
,
S.
Nolte
, and
G.
Kamlage
, “
Microdrilling of metals with ultrashort laser pulses
,”
J. Laser Appl.
12
,
23
27
(
2000
).
8.
H.
Liu
,
W.
Zhao
,
L.
Wang
,
X.
Shen
,
N.
Wang
, and
X.
Wang
, “
Percussion drilling of deep holes using picosecond ultrashort pulse laser in Ni-based superalloy coated with ceramic thermal barrier coatings
,”
Materials
13
,
3570
(
2020
).
9.
S.
Niu
,
W.
Wang
,
P.
Liu
., “
Recent advances in applications of ultrafast lasers
,”
Photonics
11
,
857
(
2024
).
10.
M.
Kraus
,
S.
Collmer
,
S.
Sommer
, and
F.
Dausinger
, “
Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation
,”
J. Laser Micro/Nanoeng.
3
,
129
134
(
2008
).
11.
Q.
Feng
,
Y. N.
Picard
,
J. P.
McDonald
,
P. A.
Van Rompay
,
S. M.
Yalisove
, and
T. M.
Pollock
, “
Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings
,”
Mater. Sci. Eng. A
430
,
203
207
(
2006
).
12.
J.
Mazumder
and
W. M.
Steen
, “
Heat transfer model for CW laser material processing
,”
J. Appl. Phys.
51
,
941
947
(
1980
).
13.
M.
Moradi
,
P. A.
Mohaza
, and
A.
Khoram
, “
An experimental investigation of the effects of fiber laser percussion drilling: Influence of process parameters
,”
Int. J. Interact. Des. Manuf.
9
,
7
12
(
2016
).
14.
M.
Mendes
,
V.
Kancharla
,
C.
Porneala
., “
Laser machining with QCW fiber lasers
,”
Int. Congr. Appl. Lasers Electro-Opt.
2014
,
79
83
(
2014
).
15.
B.
Ankamreddy
,
S.
Alya
, and
R.
Singh
,
Characterization of Hole Morphology in Deep Hole Micro Drilling using QCW Laser
(IIT Bombay, Mumbai,
2021
).
16.
S.
Marimuthu
,
H.
Elkington
, and
B.
Smith
, “
Millisecond fibre laser drilling of thick-section aerospace alloy
,”
Int. J. Adv. Manuf. Technol.
119
,
3437
3447
(
2022
).
17.
J.
Yang
,
J.
Niu
,
L.
Chen
,
K.
Cao
,
T.
Jia
, and
H.
Xu
, “
Tunable simultaneous Bayesian optimization of hole taper and processing time in QCW laser drilling
,”
J. Manuf. Process.
109
,
471
480
(
2024
).
18.
S.
Marimuthu
,
M.
Antar
, and
J.
Dunleavey
, “
Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy
,”
Precis. Eng.
55
,
339
348
(
2019
).
19.
S.
Marimuthu
,
B.
Smith
,
A.
Kiely
, and
Y.
Liu
, “
Delamination-free millisecond laser drilling of thermal barrier coated aerospace alloys
,”
J. Laser Appl.
31
,
042001
(
2019
).
20.
J.
Niu
,
J.
Yang
,
J.
Tan
,
Z.
Qin
,
L.
Chen
,
T.
Jia
, and
H.
Xu
, “
Study of the TBC delamination in nanosecond laser percussion drilling of inclined film cooling holes
,”
Opt. Laser Technol.
169
,
110077
(
2024
).
21.
L.
Rhoades
and
J.
Gilmore
, “Laser back wall protection by particulate shading,” Google Patents (
2007
).
22.
O.
Gregory
,
A. J.
Griffith
, and
D.
Stroud
, “Drilling turbine blades,” Google Patents (
1993
).
23.
A. G.
Corfe
and
D.
Stroud
, “Laser barrier material and method of laser drilling,” Google Patents (
1991
).
24.
D.
Stroud
and
A. G.
Corfe
, “Laser barrier material,” Google Patents (
1992
).
25.
S.
Sui
,
J.
Chen
,
E.
Fan
,
H.
Yang
,
X.
Lin
, and
W.
Huang
, “
The influence of laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718
,”
Mater. Sci. Eng. A
695
,
6
13
(
2017
).
26.
J. K. M.
Garofano
,
H. L.
Marcus
, and
M.
Aindow
, “
Characterization of microstructural effects in a percussion laser-drilled powder metallurgy Ni-based superalloy
,”
J. Mater. Sci.
44
,
680
684
(
2009
).
27.
Y.
Zhai
,
D. A.
Lados
,
E. J.
Brown
, and
G. N.
Vigilante
, “
Understanding the microstructure and mechanical properties of Ti-6Al-4V and Inconel 718 alloys manufactured by laser engineered Net shaping
,”
Addit. Manuf.
27
,
334
344
(
2019
).
28.
S.
Yan
,
Y.
Wang
,
Q.
Wang
,
C.
Zhang
,
D.
Chen
, and
G.
Cui
, “
Enhancing mechanical properties of the spark plasma sintered Inconel 718 alloy by controlling the nano-scale precipitations
,”
Materials
12
,
3336
(
2019
).
29.
T.
Zhang
,
H.
Yuan
, and
S.
Yang
, “
Microstructural characterization and fatigue performance of the recast material induced by laser manufacturing of a nickel-based superalloy
,”
J. Mater. Process. Technol.
293
,
117087
(
2021
).
30.
L.
Gao
,
C.
Liu
,
J.
Liu
,
T.
Yang
,
Y.
Jin
, and
D.
Sun
, “
Hole formation mechanisms in double-sided laser drilling of Ti6Al4V-C/SiC stacked materials
,”
J. Mater. Process. Technol.
325
,
118307
(
2024
).
31.
D. K. Y.
Low
,
L.
Li
,
A. G.
Corfe
, and
P. J.
Byrd
, “
Spatter-free laser percussion drilling of closely spaced array holes
,”
Int. J. Mach. Tools Manuf.
41
,
361
377
(
2001
).
32.
D. K. Y.
Low
,
L.
Li
, and
P. J.
Byrd
, “
Combined spatter and hole taper control in Nd: YAG laser percussion drilling
,”
Int. Congr. Appl. Lasers Electro-Opt.
2000
,
B11
B20
.
33.
S.
Sarfraz
,
E.
Shehab
,
K.
Salonitis
, and
W.
Suder
, “
Laser drilling of superalloys and composites
,” in
Additive and Subtractive Manufacturing of Composites
(Springer, 2021), Chap. 5, pp. 105–135.
34.
W.
Duan
,
K.
Wang
,
X.
Dong
,
X.
Mei
,
W.
Wang
, and
Z.
Fan
, “
Experimental characterizations of burr deposition in Nd:YAG laser drilling: A parametric study
,”
Int. J. Adv. Manuf. Technol.
76
,
1529
1542
(
2015
).
35.
D. K.
Low
,
L.
Li
, and
P. J.
Byrd
, “
Spatter removal characteristics and spatter prevention during laser percussion drilling of aerospace alloys
,”
J. Laser Appl.
13
,
70
78
(
2001
).
36.
D. K. Y.
Low
,
L.
Li
, and
P. J.
Byrd
, “
Spatter prevention during the laser drilling of selected aerospace materials
,”
J. Mater. Process. Technol.
139
,
71
76
(
2003
).
You do not currently have access to this content.