Hydrogen fuel-based economy has been a prime candidate for sustainable future. Hydrogen generation through water splitting is quite popular, and it has the potential to produce green hydrogen at a very low cost. The development of low-cost, high efficiency electrocatalysts is very important for water splitting processes. Hence, this paper focuses on a novel approach to develop low-cost silver (Ag) nanoparticles doped molybdenum disulfide (MoS2) electrocatalyst for hydrogen evolution reaction (HER). The HER activity of pristine MoS2 nanostructures has also been tested to compare the results with Ag-MoS2 nanocomposites. The materials (MoS2, Ag-MoS2) have been synthesized using pulsed laser ablation in liquid, which is a sustainable technique to synthesize nanomaterials. The developed electrocatalysts have been characterized using various techniques such as scanning electron microscopy, energy dispersive x-ray spectroscopy, UV-Vis spectroscopy, and x-ray diffraction to know their morphology, optical properties, and structural properties. The electrochemical performance study was analyzed in a standard three electrode cell with 0.5M H2SO4. From electrochemical measurement study, it has been observed that Ag-MoS2 has an overpotential of 0.222 V, which is less than that of MoS2 nanosheets (0.274 V). The Tafel slope is also the least for Ag-MoS2 as compared to MoS2. The charge transfer resistance for Ag-MoS2 is 13.05 Ω, while MoS2 provides the resistance of 39.93 Ω. The developed Ag-MoS2 electrocatalyst may be a promising material to generate green hydrogen at the industrial scale.

1.
H.
Ibrahim
,
A.
Ilinca
, and
J.
Perron
, “Energy storage systems—Characteristics and comparisons,”
Renewable Sustainable Energy Rev.
12
,
1221
1250
(
2008
).
2.
C.
Liu
,
F.
Li
,
L.-P.
Ma
, and
H.-M.
Cheng
, “Advanced materials for energy storage,”
Adv. Mater.
22
,
E28
E62
(
2010
).
3.
H.
Chen
,
T. N.
Cong
,
W.
Yang
,
C.
Tan
,
Y.
Li
, and
Y.
Ding
, “Progress in electrical energy storage system: A critical review,”
Prog. Nat. Sci.
19
,
291
312
(
2009
).
4.
J. O.
Abe
,
A. P. I.
Popoola
,
E.
Ajenifuja
, and
O. M.
Popoola
, “Hydrogen energy, economy and storage: Review and recommendation,”
Int. J. Hydrogen Energy
44
,
15072
15086
(
2019
).
5.
D.
Parra
,
L.
Valverde
,
F. J.
Pino
, and
M. K.
Patel
, “A review on the role, cost and value of hydrogen energy systems for deep decarbonisation,”
Renewable Sustainable Energy Rev.
101
,
279
294
(
2019
).
6.
P. P.
Edwards
,
V. L.
Kuznetsov
, and
W. I. F.
David
, “Hydrogen energy,”
Philos. Trans. R. Soc., A
365
,
1043
1056
(
2007
).
7.
X.
Chen
,
S.
Shen
,
L.
Guo
, and
S. S.
Mao
, “Semiconductor-based photocatalytic hydrogen generation,”
Chem. Rev.
110
,
6503
6570
(
2010
).
8.
T.
Bak
,
J.
Nowotny
,
M.
Rekas
, and
C. C.
Sorrell
, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,”
Int. J. Hydrogen Energy
27
,
991
1022
(
2002
).
9.
S.
Lokesh
and
R.
Srivastava
, “CuAl layered double hydroxide as a highly efficient electrocatalyst for the electrolysis of water into hydrogen and oxygen fuels,”
Int. J. Hydrogen Energy
48
,
35
50
(
2023
).
10.
J. D.
Holladay
,
J.
Hu
,
D. L.
King
, and
Y.
Wang
, “An overview of hydrogen production technologies,”
Catal. Today
139
,
244
260
(
2009
).
11.
J.
Zhu
,
L.
Hu
,
P.
Zhao
,
L. Y. S.
Lee
, and
K.-Y.
Wong
, “Recent advances in electrocatalytic hydrogen evolution using nanoparticles,”
Chem. Rev.
120
,
851
918
(
2020
).
12.
E.
Zhu
,
X.
Yan
,
S.
Wang
,
M.
Xu
,
C.
Wang
,
H.
Liu
,
J.
Huang
,
W.
Xue
,
J.
Cai
,
H.
Heinz
,
Y.
Li
, and
Y.
Huang
, “Peptide-assisted 2-D assembly toward free-floating ultrathin platinum nanoplates as effective electrocatalysts,”
Nano Lett.
19
,
3730
3736
(
2019
).
13.
A. H.
Shah
,
C.
Wan
,
Y.
Huang
, and
X.
Duan
, “Toward Molecular level understandings of hydrogen evolution reaction on platinum surface,”
J. Phys. Chem. C
127
,
12841
12848
(
2023
).
14.
Y.
Yan
,
B.
Xia
,
Z.
Xu
, and
X.
Wang
, “Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction,”
ACS Catal.
4
,
1693
1705
(
2014
).
15.
G.
Pradhan
,
P. P.
Dey
,
A.
Khare
, and
A. K.
Sharma
, “Synthesis and size modulation of MoS2 quantum dots by pulsed laser ablation in liquid for viable hydrogen generation,”
J. Appl. Phys.
129
,
025112
(
2021
).
16.
H.
Wang
,
X.
Xiao
,
S.
Liu
,
C.-L.
Chiang
,
X.
Kuai
,
C.-K.
Peng
,
Y.-C.
Lin
,
X.
Meng
,
J.
Zhao
,
J.
Choi
,
Y.-G.
Lin
,
J.-M.
Lee
, and
L.
Gao
, “Structural and electronic optimization of MoS2 edges for hydrogen evolution,”
J. Am. Chem. Soc.
141
,
18578
18584
(
2019
).
17.
V.
Yadav
,
S.
Roy
,
P.
Singh
,
Z.
Khan
, and
A.
Jaiswal
, “2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications,”
Small
15
,
1803706
(
2019
).
18.
T.
Van Nguyen
,
M.
Tekalgne
,
T. P.
Nguyen
,
Q.
Van Le
,
S. H.
Ahn
, and
S. Y.
Kim
, “Electrocatalysts based on MoS2 and WS2 for hydrogen evolution reaction: An overview,”
Battery Energy
2
,
20220057
(
2023
).
19.
J.
Kibsgaard
,
Z.
Chen
,
B. N.
Reinecke
, and
T. F.
Jaramillo
, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,”
Nat. Mater.
11
,
963
969
(
2012
).
20.
Z.
Wu
,
B.
Fang
,
Z.
Wang
,
C.
Wang
,
Z.
Liu
,
F.
Liu
,
W.
Wang
,
A.
Alfantazi
,
D.
Wang
, and
D. P.
Wilkinson
, “MoS2 nanosheets: A designed structure with high active site density for the hydrogen evolution reaction,”
ACS Catal.
3
,
2101
2107
(
2013
).
21.
D.
Voiry
,
M.
Salehi
,
R.
Silva
,
T.
Fujita
,
M.
Chen
,
T.
Asefa
,
V. B.
Shenoy
,
G.
Eda
, and
M.
Chhowalla
, “Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction,”
Nano Lett.
13
,
6222
6227
(
2013
).
22.
J.
Wang
,
M.
Yan
,
K.
Zhao
,
X.
Liao
,
P.
Wang
,
X.
Pan
,
W.
Yang
, and
L.
Mai
, “Field effect enhanced hydrogen evolution rReaction of MoS2 nanosheets,”
Adv. Mater.
29
,
1604464
(
2017
).
23.
H. D.
Morales-Rodríguez
,
K.
Nguyen-Ba
,
F.
Chen
,
Q.
Shen
,
R.
Tu
,
L. M.
Zhang
,
F. L.
Castillo-Alvarado
,
J. I.
Rodríguez-Hernández
, and
J. R.
Vargas-Garcia
, “Modulating the electronic structure of MoS2 nanosheets by Mn doping for improving hydrogen evolution reaction: An experimental and theoretical DFT-QTAIM study,”
Mater. Today Commun.
38
,
107786
(
2024
).
24.
D.
Wang
,
X.
Zhang
,
Y.
Shen
, and
Z.
Wu
, “Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts,”
RSC Adv.
6
,
16656
16661
(
2016
).
25.
K.
Mehta
,
S.
Soumyashree
,
J.
Pandya
,
P.
Singh
,
R. K.
Kushawaha
,
P.
Kumar
,
S.
Shinde
,
J.
Saha
, and
P. K.
Baruah
, “Impact of viscosity of liquid on nanoparticles synthesized by laser ablation in liquid: An experimental and theoretical investigation,”
Appl. Phys. A
129
,
388
(
2023
).
26.
P. K.
Baruah
,
A. K.
Sharma
, and
A.
Khare
, “Effective control of particle size, surface plasmon resonance and stoichiometry of Cu@CuxO nanoparticles synthesized by laser ablation of Cu in distilled water,”
Opt. Laser Technol.
108
,
574
582
(
2018
).
27.
K.
Mehta
and
P. K.
Baruah
, “A comprehensive review and outlook on the experimental techniques to investigate the complex dynamics of pulsed laser ablation in liquid for nanoparticle synthesis,”
Rev. Sci. Instrum.
93
,
091501
(
2022
).
28.
P. K.
Baruah
,
A. K.
Sharma
, and
A.
Khare
, “Role of confining liquids on the properties of Cu@Cu2O nanoparticles synthesized by pulsed laser ablation and a correlative ablation study of the target surface,”
RSC Adv.
9
,
15124
15139
(
2019
).
29.
C.
Byram
,
S. S. B.
Moram
,
D.
Banerjee
,
R.
Beeram
,
J.
Rathod
, and
V. R.
Soma
, “Review of ultrafast laser ablation for sensing and photonic applications,”
J. Opt.
25
,
043001
(
2023
).
30.
H.
Zeng
,
X.-W.
Du
,
S. C.
Singh
,
S. A.
Kulinich
,
S.
Yang
,
J.
He
, and
W.
Cai
, “Nanomaterials via laser ablation/irradiation in liquid: A review,”
Adv. Funct. Mater.
22
,
1333
1353
(
2012
).
31.
D.
Zhang
,
B.
Gökce
, and
S.
Barcikowski
, “Laser synthesis and processing of colloids: Fundamentals and applications,”
Chem. Rev.
117
,
3990
4103
(
2017
).
32.
S. K.
Nayak
,
M. S.
Ahmed
,
M.
Velpandian
,
P.
Meduri
,
J.
Rathod
,
V. R.
Soma
, and
S. S. K.
Raavi
, “Exotic femtosecond nonlinear optical properties of laser ablated MoS2 quantum dots,”
Opt. Mater.
147
,
114630
(
2024
).
33.
A.
Sahoo
,
T.
Dixit
,
K. V.
Anil Kumar
,
K.
Lakshmi Ganapathi
,
P. K.
Nayak
,
M. S. R.
Rao
, and
S.
Krishnan
, “Elucidating the role of electron transfer in the photoluminescence of MoS2 quantum dots synthesized by fs-pulse ablation,”
J. Phys. Chem. Lett.
15
,
5586
5593
(
2024
).
34.
P.
Zuo
,
L.
Jiang
,
X.
Li
,
M.
Tian
,
Y.
Yuan
,
W.
Han
,
L.
Ma
,
L.
Hu
,
Z.
He
, and
F.
Li
, “MoS2 core-shell nanoparticles prepared through liquid-phase ablation and light exfoliation of femtosecond laser for chemical sensing,”
Sci. China: Technol. Sci.
66
,
853
862
(
2023
).
35.
P. K.
Baruah
,
A.
Singh
,
L.
Rangan
,
A. K.
Sharma
, and
A.
Khare
, “Optimization of copper nanoparticles synthesized by pulsed laser ablation in distilled water as a viable SERS substrate for karanjin,”
Mater. Chem. Phys.
220
,
111
117
(
2018
).
36.
B.
Li
,
L.
Jiang
,
X.
Li
,
P.
Ran
,
P.
Zuo
,
A.
Wang
,
L.
Qu
,
Y.
Zhao
,
Z.
Cheng
, and
Y.
Lu
, “Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water,”
Sci. Rep.
7
,
11182
(
2017
).
37.
M.
Govindasamy
,
S.-F.
Wang
,
A. A.
Alothman
,
R. A.
Alshgari
, and
P. S.
Ganesh
, “Synergetic effect of the ultrasonic-assisted hydrothermal process on the photocatalytic performance of MoS2 and WS2 nanoparticles,”
J. Mater. Sci.: Mater. Electron.
33
,
8858
8867
(
2022
).
38.
H. N. T.
Phung
,
V. N. K.
Tran
,
L. T.
Nguyen
,
L. K. T.
Phan
,
P. A.
Duong
, and
H. V. T.
Le
, “Investigating visible-photocatalytic activity of MoS2 TiO2 heterostructure thin films at various MoS2 deposition times,”
J. Nanomater.
2017
,
3197540
(
2017
).
39.
H. S.
Magar
,
R. Y. A.
Hassan
, and
A.
Mulchandani
, “Electrochemical Impedance Spectroscopy (EIS): Principles, construction, and biosensing applications,”
Sensors
21
, 6578 (
2021
).
40.
F.
Shahi
,
P.
Parvin
,
S. Z.
Mortazavi
,
A.
Reyhani
,
M.
Sadrzadeh
,
A.
Moafi
,
M.
Ebrahimi
, and
M.
Aghaei
, “In-situ generation of nitrogen-doped MoS2 quantum dots using laser ablation in cryogenic medium for hydrogen evolution reaction,”
Energies
16, 455 (
2023
).
41.
M.
Ghosal Chowdhury
,
L.
Sahoo
,
S.
Maity
,
D.
Bain
,
U. K.
Gautam
, and
A.
Patra
, “Silver nanocluster/MoS2 heterostructures for hydrogen evolution,”
ACS Appl. Nano Mater.
5
,
7132
7141
(
2022
).
42.
J.
Wang
,
W.
Fang
,
Y.
Hu
,
Y.
Zhang
,
J.
Dang
,
Y.
Wu
,
H.
Zhao
, and
Z.
Li
, “Different phases of few-layer MoS2 and their silver/gold nanocomposites for efficient hydrogen evolution reaction,”
Catal. Sci. Technol.
10
,
154
163
(
2020
).
43.
A. Y.
Polyakov
,
S.
Al Bacha
,
W. M. A.
El Rouby
,
B.
Munkhbat
,
L.
Assaud
,
P.
Millet
,
B.
Wickman
, and
T. O.
Shegai
, “Top-down nanostructured multilayer MoS2 with atomically sharp edges for electrochemical hydrogen evolution reaction,”
Mater. Today Nano
25
,
100467
(
2024
).
You do not currently have access to this content.