Cu has a high infrared light reflectivity, which leads to the easy formation of defects such as pores in copper alloys during the laser cladding process. The purpose of this research is to reduce the porosity of tin bronze coatings during laser cladding by adding titanium elements with high infrared absorption. The porosity of the coating was characterized using scanning electron microscopy, metallographic microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The research results indicate that as the content of titanium element increases, the porosity within the coating first decreases and then increases. When the titanium addition was 2%, the minimum porosity of the coating was 0.034%. The microhardness of the samples was tested using a semiautomatic Vickers hardness tester, and the reciprocating dry friction performance at room temperature was tested using a UMT-3 friction tester. The incorporation of titanium significantly enhances the microhardness and frictional properties of the laser-clad tin bronze coating. Therefore, this study provides experimental data support for controlling the porosity and frictional properties of laser-clad tin bronze coatings through elemental composition.

1.
Y.
Liang
,
H.
Jiang
,
Q.
Lei
,
L.
Jiang
,
X.
Zhang
,
S.
Xiao
,
X.
Liu
,
L.
Li
,
Z.
Pei
, and
Q.
Li
, “
Cr3C2 reinforced tin-bronze matrix composites with enhanced mechanical properties and wear resistance
,”
Mater. Charact.
210
, 113805 (
2024
).
2.
B.
Nie
,
Y.
Xue
,
X.
Wang
,
Y.
Ding
,
K.
Fu
,
C.
Zhong
,
W.
Gui
, and
B.
Luan
, “
On the elemental segregation and melt flow behavior of pure copper laser cladding
,”
Surf. Coat. Technol.
452
, 129085 (
2023
).
3.
H.
Mei
,
D.
Geng
,
R.
Wang
,
L.
Cheng
,
J. C.
Ding
,
Q.
Luo
,
T. F.
Zhang
, and
Q.
Wang
, “
Effect of Cu doping on the microstructure and mechanical properties of AlTiVN-Cu nanocomposite coatings
,”
Surf. Coat. Technol.
402
, 126490 (
2020
).
4.
Y.
Jiang
,
L.
Xiao
,
P.
Zhai
,
F.
Li
,
Y.
Li
,
Y.
Zhang
,
Q.
Zhong
,
Z.
Cai
,
S.
Liu
, and
X.
Zhao
, “
Microstructure and properties of Cu-Cr-SiC in-situ composite coatings by laser cladding
,”
Surf. Coat. Technol.
456
,
129264
(
2023
).
5.
H.
Ma
,
Z.
Liu
,
J.
Li
,
Q.
Liu
,
J.
Zhang
, and
T.
Wei
, “
Optimization design of environmental-friendly Cu–Fe laser cladding coating for self-grown microchannel in a marine corrosive environment
,”
J. Alloys Compd.
940
, 168820 (
2023
).
6.
C.
Chen
,
J.
Zhou
,
F.
Xue
, and
Q.
Wu
, “
Elimination of liquid metal embrittlement cracks during arc cladding of tin bronze on steel sheet
,”
Mater. Lett.
269
,
127646
(
2020
).
7.
H. J.
Park
,
H. J.
Shin
,
H. S.
Jung
,
C.
Kim
,
M. M.
Sung
,
C. M.
Lee
,
H. S.
Soh
, and
J. G.
Lee
, “
Iodine-catalyzed chemical vapor deposition of Cu on MPTMS monolayer surface in a low deposition temperature regime
,”
Surf. Coat. Technol.
201
,
9432
9436
(
2007
).
8.
X.
Guo
,
G.
Zhang
,
W.
Li
,
Y.
Gao
,
H.
Liao
, and
C.
Coddet
, “
Investigation of the microstructure and tribological behavior of cold-sprayed tin-bronze-based composite coatings
,”
Appl. Surf. Sci.
255
,
3822
3828
(
2009
).
9.
Q.
Shang
,
A.
Yu
,
J.
Wu
,
C.
Shi
, and
W.
Niu
, “
Influence of heat affected zone on tribological properties of CuSn6 bronze laser dimple textured surface
,”
Tribol. Int.
105
,
158
165
(
2017
).
10.
S. D.
Jadhav
,
D.
Fu
,
M.
Deprez
,
K.
Ramharter
,
D.
Willems
,
B.
Van Hooreweder
, and
K.
Vanmeensel
, “
Highly conductive and strong CuSn0.3 alloy processed via laser powder bed fusion starting from a tin-coated copper powder
,”
Addit. Manuf.
36
,
101607
(
2020
).
11.
G. M.
Karthik
,
P.
Sathiyamoorthi
,
A.
Zargaran
,
J. M.
Park
,
P.
Asghari-Rad
,
S.
Son
,
S. H.
Park
, and
H. S.
Kim
, “
Novel precipitation and enhanced tensile properties in selective laser melted Cu–Sn alloy
,”
Materialia
13
,
100861
(
2020
).
12.
Z.
Mao
,
D. Z.
Zhang
,
J.
Jiang
,
G.
Fu
, and
P.
Zhang
, “
Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu–15Sn high-tin bronze
,”
Mater. Sci. Eng., A
721
,
125
134
(
2018
).
13.
Q.
Wu
,
W.
Long
,
L.
Zhang
, and
H.
Zhao
, “
A review on ceramic coatings prepared by laser cladding technology
,”
Opt. Laser Technol.
176
, 110993 (
2024
).
14.
L.
Zhu
,
P.
Xue
,
Q.
Lan
,
G.
Meng
,
Y.
Ren
,
Z.
Yang
,
P.
Xu
, and
Z.
Liu
, “
Recent research and development status of laser cladding: A review
,”
Opt. Laser Technol.
138
, 106915 (
2021
).
15.
A. Sylvester
Bolokang
and
M. Ntsoaki
Mathabathe
, “
Laser cladding—A modern joining technique
,” in
Advanced Welding and Deforming
, Handbooks in Advanced Manufacturing series (
Elsevier
,
2021
), Chap. 11, pp.
291
319
(
2021
).
16.
C. K.
Kim
,
S. G.
Choi
,
J. H.
Kim
,
H. J.
Jo
,
Y.-C.
Jo
,
S.-p.
Choi
, and
Y. T.
Cho
, “
Characterization of surface modification by laser cladding using low melting point metal
,”
J. Ind. Eng. Chem.
87
,
54
59
(
2020
).
17.
F.
Arias-González
,
J.
del Val
,
R.
Comesaña
,
J.
Penide
,
F.
Lusquiños
,
F.
Quintero
,
A.
Riveiro
,
M.
Boutinguiza
, and
J.
Pou
, “
Laser cladding of phosphor bronze
,”
Surf. Coat. Technol.
313
,
248
254
(
2017
).
18.
Q.
Tan
,
K.
Liu
,
J.
Li
,
S.
Geng
,
L.
Sun
, and
V.
Skuratov
, “
A review on cracking mechanism and suppression strategy of nickel-based superalloys during laser cladding
,”
J. Alloys Compd.
1001
, 175164 (
2024
).
19.
C.
Du
,
L.
Hu
,
X.
Ren
,
Y.
Li
,
F.
Zhang
,
P.
Liu
, and
Y.
Li
, “
Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding
,”
Surf. Coat. Technol.
424
, 127617 (
2021
).
20.
S. M. H.
Hojjatzadeh
,
N. D.
Parab
,
Q.
Guo
,
M.
Qu
,
L.
Xiong
,
C.
Zhao
,
L. I.
Escano
,
K.
Fezzaa
,
W.
Everhart
,
T.
Sun
, and
L.
Chen
, “
Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding
,”
Int. J. Mach. Tools Manuf.
153
, 103555 (
2020
).
21.
S. A.
Khairallah
,
A. T.
Anderson
,
A.
Rubenchik
, and
W. E.
King
, “
Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
,”
Acta Mater.
108
,
36
45
(
2016
).
22.
A. A.
Martin
,
N. P.
Calta
,
J. A.
Hammons
,
S. A.
Khairallah
,
M. H.
Nielsen
,
R. M.
Shuttlesworth
,
N.
Sinclair
,
M. J.
Matthews
,
J. R.
Jeffries
,
T. M.
Willey
, and
J. R. I.
Lee
, “
Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging
,”
Mater. Today Adv.
1
,
100002
(
2019
).
23.
L.
Huang
,
X.
Hua
,
D.
Wu
,
L.
Fang
,
Y.
Cai
, and
Y.
Ye
, “
Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding
,”
J. Manuf. Process.
33
,
43
53
(
2018
).
24.
W. E.
King
,
H. D.
Barth
,
V. M.
Castillo
,
G. F.
Gallegos
,
J. W.
Gibbs
,
D. E.
Hahn
,
C.
Kamath
, and
A. M.
Rubenchik
, “
Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
,”
J. Mater. Process. Technol.
214
,
2915
2925
(
2014
).
25.
S. A.
Khairallah
and
A.
Anderson
, “
Mesoscopic simulation model of selective laser melting of stainless steel powder
,”
J. Mater. Process. Technol.
214
,
2627
2636
(
2014
).
26.
G.
Kasperovich
,
J.
Haubrich
,
J.
Gussone
, and
G.
Requena
, “
Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting
,”
Mater. Des.
105
,
160
170
(
2016
).
27.
M.
Erfanmanesh
,
H.
Abdollah-Pour
,
H.
Mohammadian-Semnani
, and
R.
Shoja-Razavi
, “
An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel
,”
Opt. Laser Technol.
97
,
180
186
(
2017
).
28.
L.-X.
Lu
,
N.
Sridhar
, and
Y.-W.
Zhang
, “
Phase field simulation of powder bed-based additive manufacturing
,”
Acta Mater.
144
,
801
809
(
2018
).
29.
R.
Zheng
,
S. F.
Li
,
R. D. K.
Misra
,
K.
Kondoh
, and
Y. F.
Yang
, “
Role of W in W-coated Cu powder in enhancing the densification-conductivity synergy of laser powder bed fusion built Cu component
,”
J. Mater. Process. Technol.
322
,
118169
(
2023
).
30.
Z.
Hu
,
B.
Gan
,
J.
Tan
,
J.
Wu
,
S.
Chen
,
J.
Dong
, and
Z.
Ma
, “
The enhancement of laser absorptivity and properties in laser powder bed fusion manufactured Cu–Cr–Zr alloy by employing Y2O3 coated powder as precursor
,”
J. Alloys Compd.
927
, 167111 (
2022
).
31.
Y.
Zou
and
J.
Malzbender
, “
Development and optimization of porosity measurement techniques
,”
Ceram. Int.
42
,
2861
2870
(
2016
).
32.
X.
Zhan
,
C.
Qi
,
Z.
Gao
,
D.
Tian
, and
Z.
Wang
, “
The influence of heat input on microstructure and porosity during laser cladding of Invar alloy
,”
Opt. Laser Technol.
113
,
453
461
(
2019
).
33.
S.
Raghavendra
,
P.
Jayashree
,
D. A.
Rita
,
G.
Piras
,
D.
Scheider
,
M.
Chemello
, and
M.
Benedetti
, “
Wear and material characterization of CuSn10 additively manufactured using directed energy deposition
,”
Addit. Manuf. Lett.
6
,
100136
(
2023
).
34.
H.
Siva Prasad
,
F.
Brueckner
,
J.
Volpp
, and
A. F. H.
Kaplan
, “
Laser metal deposition of copper on diverse metals using green laser sources
,”
Int. J. Adv. Manuf. Technol.
107
,
1559
1568
(
2020
).
35.
W.
Fan
,
Y.
Peng
,
Y.
Qi
,
H.
Tan
,
Z.
Feng
,
Y.
Wang
,
F.
Zhang
, and
X.
Lin
, “
Partially melted powder in laser based directed energy deposition: Formation mechanism and its influence on microstructure
,”
Int. J. Mach. Tools Manuf.
192
, 104072 (
2023
).
36.
W.
Ma
,
X.
Xu
,
Y.
Xie
,
Z.
Bei
,
Y.
Yuan
,
H.
Yu
, and
D.
Sun
, “
Microstructural evolution and anti-corrosion properties of laser cladded Ti based coating on Q235 steel
,”
Surf. Coat. Technol.
477
, 130383 (
2024
).
37.
T. Y.
Yin
,
S.
Zhang
,
Z. Y.
Wang
,
C. H.
Zhang
,
Y.
Liu
, and
J.
Chen
, “
Effect of laser energy density on microstructural evolution and wear resistance of modified aluminum bronze coatings fabricated by laser cladding
,”
Mater. Chem. Phys.
285
, 126191 (
2022
).
38.
Y.
Du
,
Y.
Peng
,
K.
Mao
,
G.
He
, and
L.
Zhang
, “
Effect of laser specific energy on mechanical properties of Fe60 coatings by laser cladding
,”
Opt. Laser Technol.
172
, 110497 (
2024
).
39.
Z.
Sun
,
L.
Chen
,
X.
Chen
,
F.
Meng
,
T.
Yu
, and
J.
Zhao
, “
Analysis and prediction of Cu-Sn-Ti alloy deposited on 316 L steel by coaxial laser cladding
,”
Optik
282
, 170839 (
2023
).
40.
J.
Li
,
X.
Cui
,
Y.
Guan
,
G.
Jin
,
W.
Zheng
,
W.
Su
,
S.
Wan
, and
Z.
Shi
, “
Effects of Cr content on microstructure and tribological properties of laser cladding Ti-based coatings
,”
Tribol. Int.
187
, 108744 (
2023
).
41.
S.-Y.
Zhang
,
X.-B.
Liu
,
Y.
Zhu
,
Y.-F.
Liu
,
Y.
Meng
,
J.
Liang
, and
S.-H.
Zhang
, “
Stellite3-Ti3SiC2-Cu composite coatings on IN718 by laser cladding towards improved wear and oxidation resistance
,”
Surf. Coat. Technol.
446
, 128766 (
2022
).
You do not currently have access to this content.