Einstein's General Relativity framework, founded on spacetime curvature by gravitational fields and a constant vacuum light speed, faces a new interpretation challenging this paradigm. This fresh perspective, anchored in “Equilibrium,” suggests variable light speeds at coherent laser beam intersections, altering our understanding of the five fundamental force densities in light. It investigates the interplay between gravity and light across astronomical and subatomic scales, exploring topics like Gravitational Redshift, Black Holes, Dark Matter, and the intricate dynamics of light absorption and emission. In contrast to General Relativity, this innovative viewpoint merges gravity and light by synthesizing the Stress-Energy Tensor and Gravitational Tensor, shedding light on Gravitational-Electromagnetic Interaction. It introduces a tensor framework for Black Holes (Gravitational Electromagnetic Confinements) through the interplay of electromagnetic energy gradients and Lorentz transformations. By incorporating the “CURL” effect near Black Hole gravitational fields, this theory outperforms General Relativity, particularly in scenarios like Gravitational Lensing. Einstein's contributions, including the Einstein Gravitational Constant within the Energy-Stress Tensor, diverge from this new interpretation presenting the combined Electromagnetic Tensor and Gravitational Tensor. Theoretical advancements in Black Hole solutions harken back to Jonh Archibald Wheeler's pioneering work in 1955, providing key solutions for the relativistic quantum mechanical Dirac equation within a tensor framework. Experimental validation of this paradigm shift, leveraging Galileo satellites and ground-based MASER frequency measurements, emphasizes discrepancies between General Relativity and the New Theory, especially in predicting Gravitational Redshift, pushing observational boundaries beyond current accuracies. The fusion of Quantum Physics and General Relativity, showcased in frameworks like String Theory, predicts dynamic natural constants. This interdisciplinary pursuit aims to redefine perspectives on the gravitational constant “G,” showcasing its stability over time while bridging General Relativity and Quantum Physics domains. This abstract encapsulates groundbreaking research on the synergy of light, gravity, and theoretical frameworks, hinting at potential breakthroughs at the forefront of optical and gravitational sciences.

1.
Vegt
Wim
, “
The origin of gravity
,”
Res. Rev.: J. Pure Appl. Phys.
22
,
13
32
(
2022
), see https://www.rroij.com/peer-reviewed/the-origin-of-gravity-91966.html.
2.
Vegt
Wim
, “
A continuous model of matter based on AEONs
,”
Phys. Essays
8
,
216
221
(
1995
).
3.
Vegt
Wim
, “
The origin of gravity in ‘quantum light theory’
,”
OSF
(submitted).
4.
Joel
Kaye
,
A History of Balance, 1250–1375: The Emergence of a New Model of Equilibrium and its Impact on Thought
(
Cambridge University Press
,
Cambridge
, 2014), see https://www.cambridge.org/core/books/history-of-balance-12501375/BEFFA83AD6BE2C0EFAEFBFF4A5E6F041.
5.
R. P.
Kerr
and
A.
Schild
, “
Republication of: A new class of vacuum solutions of the Einstein field equations
,”
Gen. Relativ. Gravitation
41
,
2485
2499
(
2009
).
6.
Julio C.
Gobbi
, “
Luminiferous Æther
,”
Gen. Sci. J.
2
,
1
12
(
2018
), see https://www.gsjournal.net/Science-Journals/Research%20Papers-Mechanics%20/%20Electrodynamics/Download/7559.
7.
Vegt
Wim
, “
The Maxwell-Schrödinger-Dirac correspondence in auto confined electromagnetic fields
,”
Ann. Fond. Louis Broglie
27
,
3
17
(
2002
), see https://fondationlouisdebroglie.org/AFLB-271/aflb271p001.pdf.
8.
Einstein
Albert
, “Elementare Uberlegungen zur Interpretation der Grundlagen der Quanten-Mechanik,” 19 July 2011 [originally published in Oliver and Boyd (1953), pages 33–40, translated into English]. 10.48550/arXiv.1107.3701
9.
Weng
Zihua
, “Influence of velocity curl on conservation laws,” arXiv.0810.0065 (2008).
10.
N.
Mavromatos
,
P.
Dorlis
, and
S. N.
Vlachos
, “
Torsion-induced axions in string theory, quantum gravity and the cosmological tensions
,”
Proc. Sci.
463
,
1
23
(
2023
), see https://pos.sissa.it/463/162/pdf.
11.
Vegt
Wim
, “
The 4-dimensional dirac equation in relativistic field theory
,”
Eur. J. Appl. Sci.
9
,
35
93
(
2021
).
12.
J.
Raymond
, “
Beach; A classical field theory of gravity and electromagnetism
,”
J. Mod. Phys.
5
,
928
939
(
2014
). doi
13.
Vegt
Wim
, “
The speed of light by electromagnetic interaction
,”
Calculation
1
(
2022
), see https://community.wolfram.com/groups/-/m/t/2576692?p_p_auth=mTldHX3v.
14.
Clerk Maxwell
James
, “
A dynamical theory of the electromagnetic field
,”
Phil. Trans. R. Soc. Lond.
155
,
459
512
(
1865
).
15.
Vegt
Wim
, “
Propagation of light within a gravitational field in quantum light theory
,”
Calculation
3
(
2022
), see https://community.wolfram.com/groups/-/m/t/2576537.
16.
Vegt
Wim
, “
Gravitational RedShift between two atomic clocks
,”
Calculation
2
(
2023
), see https://community.wolfram.com/groups/-/m/t/2622560?p_p_auth=EC8QO0Xz.
17.
P.
Delva
,
N.
Puchades
,
E.
Schönemann
,
F.
Dilssner
,
C.
Courde
,
S.
Bertone
,
F.
Gonzalez
,
A.
Hees
,
C.
Le Poncin-Lafitte
,
F.
Meynadier
, and
R.
Prieto-Cerdeira
, “
Gravitational redshift test using eccentric Galileo satellites
,”
Phys. Rev. Lett.
121
,
231101
(
2018
).
18.
S.
Herrmann
,
F.
Finke
,
M.
Lülf
,
O.
Kichakova
,
D.
Puetzfeld
,
D.
Knickmann
,
M.
List
,
B.
Rievers
,
G.
Giorgi
,
C.
Günther
, and
H.
Dittus
, “
Gravitational redshift test using eccentric Galileo satellites
,”
Phys. Rev. Lett.
121
,
231102
(
2018
).
19.
Daniel Y.
Gerazie
, “Lunar laser ranging test of the invariance of c,” arXiv:0912.3934.
20.
John Archibald
Wheeler
, “
GEONs
,”
Phys. Rev. J.
97
,
511
526
(
1955
).
21.
Joshua N.
Benabou
,
Quentin
Bonnefoy
,
Malte
Buschmann
,
Soubhik
Kumar
, and
Benjamin R.
Safdi
, “
Cosmological dynamics of string theory axion strings
,”
Phys. Rev. D
110
,
035021
(
2024
).
22.
Astrid
Eichhorn
,
Rafael R.
Lino dos Santos
, and
João Lucas
Miqueleto
, “
From quantum gravity to gravitational waves through cosmic strings
,”
Phys. Rev. D
109
,
026013
(
2024
).
23.
Vegt
Wim
, “
Black holes with discrete spherical energy levels
,”
Calculation
4
(
2023
), see https://community.wolfram.com/groups/-/m/t/2896941?p_p_auth=D7ZKuo3k.
24.
Nikko John Leo S.
Lobos
and
Reggie C.
Pantig
, “
Generalized extended uncertainty principle black holes: Shadow and lensing in the macro- and microscopic realms
,”
Physics
4
,
1318
1330
(
2022
).
25.
Vegt
Wim
, “
Time and polar angular regions dependent GEONs with discrete energy levels
,”
Calculation
6
(
2023
), see https://community.wolfram.com/groups/-/m/t/2901457?p_p_auth=H4jjDHmQ.
26.
Vegt
Wim
, “
Time and radius dependent GEONs with discrete energy levels
,”
Calculation
5
(
2023
), see https://community.wolfram.com/groups/-/m/t/2991686?p_p_auth=CGtF3Tkg.
27.
Vegt
Wim
, “
Time and azimuthal regions dependent GEONs with discrete energy levels
,”
Calculation
7
(
2023
), see https://community.wolfram.com/groups/-/m/t/3200586?p_p_auth=TWz8jyxO.
28.
W.
Vegt
, “
Single harmonic black holes equation (7): confinement of light by gravitational electromagnetic interaction
,”
Eur. J. Eng. Technol. Res.
5
,
57
75
(
2020
).
29.
Vegt
Wim
, “
A continuous model of matter based on AEONs
,”
Phys. Essays
8
,
202
(
1995
).
30.
H.
Le Jeannic
,
A.
Tiranov
,
J.
Carolan
., “
Dynamical photon–photon interaction mediated by a quantum emitter
,”
Nat. Phys.
18
,
1191
1195
(
2022
).
31.
Vegt
Wim
, “
An experiment to test general relativity: Changing the speed of light by electromagnetic interaction
,”
Calculation
8
(
2024
), see https://community.wolfram.com/groups/-/m/t/3168232?p_p_auth=425V1HDh.
32.
Vegt
Wim
, “
The weight of photons within a gravitational field
,”
J. Phys. Opt. Sci.
5
(
1
),
1
7
(
2023
).
33.
Einstein
Albert
, “
On the influence of gravitation on the propagation of light
,”
Ann. Phys.
35
,
898
908
(
1953
).
34.
Vegt
Wim
, “
A perfect equilibrium inside a Black Hole
,”
Calculation
9
(
2023
), see https://community.wolfram.com/groups/-/m/t/3087823?p_p_auth=dpH7iBMg.
35.
Vegt
Wim
, “
An experiment to test general relativity: Changing the speed of light by electromagnetic interaction
,”
Calculation
10
(
2024
), see https://community.wolfram.com/groups/-/m/t/3168232?p_p_auth=425V1HDh.
You do not currently have access to this content.