Ultrashort laser microwelding is an advanced technology with significant potential and benefits for welding dissimilar materials, including ceramics and metals. Details of the microwelding process involving ceramics and metals with ultrashort lasers remain somewhat unclear, especially regarding phase transformation and the underlying mechanism of joint formation. In this study, we utilized the ultrashort laser microwelding technique to join sapphire and Invar alloy. We have developed a predictive numerical model to calculate the interfacial temperature during the laser irradiation process. The relative contributions of heat diffusion, heat radiation, and heat accumulation in the welding process of two materials were investigated under single and multiple pulses. Upon implementing laser pulse energies of 35, 40, and 50 μJ, the maximum temperatures of sapphire were 3027.8, 4179.89, and 4533.30 K, respectively. The maximum temperature of the Invar alloy exceeded the vaporization temperature (3223.15 K). This resulted in various phase transformations, including evaporation, ionization, and melting, that occurred on both substrates. These transformations also caused the intermixing and diffusion of materials. It then resulted in the formation of the final joint. Based on the findings, we aim to provide a more comprehensive understanding and practical applications of the ultrashort laser microwelding technique.

1.
J.
Yang
,
M.
Xiao
,
L.
Wu
,
Z.
Li
,
H.
Liu
,
Y.
Zhao
,
W.
Guo
, and
C.
Tan
, “
The influence of laser power on microstructure and properties of laser welding-brazing of Al alloys to Al–Si coated 22MnB5 steel
,”
Opt. Laser Technol.
162
,
109318
(
2023
).
2.
J.
Jiang
,
J. P.
Oliveira
,
J.
Yang
, et al, “
Effect of defocusing distance on interfacial reaction and mechanical properties of dissimilar laser Al/steel joints with a porous high entropy alloy coating
,”
Mater. Charact.
210
,
113751
(
2024
).
3.
Q.
Jiang
,
J.
Yang
,
R.
Xiao
, et al, “
Outstanding ductility of dissimilar laser Al/steel spot joint using a high entropy alloy interlayer
,”
Mater. Lett.
349
,
134707
(
2023
).
4.
K.
Cvecek
,
I.
Alexeev
,
I.
Miyamoto
, and
M.
Schmidt
, “
Defect formation in glass welding by means of ultra short laser pulses
,”
Phys. Procedia
5
,
495
502
(
2010
).
5.
A.
de Pablos-Martín
,
C.
Grosse
,
A.
Cismak
, and
T.
Höche
, “
Laser-welded steel foils with sapphire substrates
,”
Acta Metall. Sin. (Engl. Lett.)
29
,
683
688
(
2016
).
6.
M.
Overend
,
Q.
Jin
, and
J.
Watson
, “
The selection and performance of adhesives for a steel–glass connection
,”
Int. J. Adhes. Adhes.
31
,
587
597
(
2011
).
7.
C. M.
Montesa
,
N.
Shibata
,
S.-Y.
Choi
,
H.
Tonomura
,
K.
Akiyama
,
Y.
Kuromitsu
, and
Y.
Ikuhara
, “
High-resolution transmission electron microscopy observation of liquid-phase bonded aluminum/sapphire interfaces
,”
Mater. Trans.
50
,
1037
1040
(
2009
).
8.
X.
Yao
,
Y.
Zhao
,
Y.
Huang
,
X.
Song
,
D.
Mo
, and
J.
Yang
, “
A novel CoCrNi medium entropy alloy enhanced AgCuTi composite filler to braze Kovar alloy and sapphire
,”
Mater. Charact.
197
,
112668
(
2023
).
9.
J.
Xu
,
Q.
Jiang
,
J.
Yang
, et al, “
A review on ultrafast laser microwelding of transparent materials and transparent material
,”
Metals
13
,
876
(
2023
).
10.
D. P.
Hand
,
R. M.
Carter
,
R. R.
Thomson
,
M. J. D.
Esser
,
M.
Troughton
,
I.
Elder
, and
R.
Lamb
, “
Ultrafast laser microwelding of optical materials
,” in
Conference on Lasers and Electro-Optics
, San Jose, CA, 13–18 May 2018 (
IEEE
,
Piscataway, NJ
,
2018
), p.
AM1M.1
.
11.
Z.
Liu
,
J.
Yang
,
Y.
Li
,
W.
Li
,
J.
Chen
,
L.
Shen
,
P.
Zhang
, and
Z.
Yu
, “
Wetting and spreading behaviors of Al–Si alloy on surface textured stainless steel by ultrafast laser
,”
Appl. Surf. Sci.
520
,
146316
(
2020
).
12.
A.
Rudenko
,
J.-P.
Colombier
, and
T. E.
Itina
, “
Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass
,”
Phys. Chem. Chem. Phys.
20
,
5887
5899
(
2018
).
13.
E. H.
Penilla
,
L. F.
Devia-Cruz
,
A. T.
Wieg
, et al, “
Ultrafast laser welding of ceramics
,”
Science
365
,
803
808
(
2019
).
14.
I.
Miyamoto
,
K.
Cvecek
, and
M.
Schmidt
, “
Advances of laser welding technology of glass – Science and technology
,”
J. Laser Micro/Nanoeng.
15
,
63
67
(
2020
).
15.
K. C.
Phillips
,
H. H.
Gandhi
,
E.
Mazur
, and
S. K.
Sundaram
, “
Ultrafast laser processing of materials: A review
,”
Adv. Opt. Photonics
7
,
684
(
2015
).
16.
L.
Zhang
,
H.
Wu
,
J.
Wen
,
M.
Li
,
X.
Shao
, and
X.
Ma
, “
Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser
,”
J. Mater. Process. Technol.
302
,
117504
(
2022
).
17.
G.
Wang
,
X.
Sun
,
J.
Xu
,
Y.
Shan
,
X.
Han
,
J.
Xu
, and
J.
Li
, “
Pressureless thermal diffusion bonding of transparent AlON ceramics by using a powder interlayer of parent material
,”
Scr. Mater.
171
,
118
121
(
2019
).
18.
R.
Pan
,
D.
Yang
,
T.
Zhou
, et al, “
Micro-welding of sapphire and metal by femtosecond laser
,”
Ceram. Int.
49
,
21384
21392
(
2023
).
19.
C.
Ji
,
Y.
Huang
,
X.
Chen
,
J.
Jiang
,
Z.
Guo
, and
Y.
Long
, “
Direct microwelding of dissimilar glass and Kovar alloy without optical contact using femtosecond laser pulses
,”
J. Cent. South Univ.
29
,
3422
3435
(
2022
).
20.
Y.
Wang
,
Y.
Li
,
S.
Ao
,
Z.
Luo
, and
D.
Zhang
, “
Welding of 304 stainless steel and glass using high-repetition-frequency femtosecond laser
,”
Mater. Res. Express
8
,
106523
(
2021
).
21.
S.
Richter
,
S.
Döring
,
A.
Tünnermann
, and
S.
Nolte
, “
Bonding of glass with femtosecond laser pulses at high repetition rates
,”
Appl. Phys. A
103
,
257
261
(
2011
).
22.
M.
Shimizu
,
M.
Sakakura
,
M.
Ohnishi
,
M.
Yamaji
,
Y.
Shimotsuma
,
K.
Hirao
, and
K.
Miura
, “
Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates
,”
Opt. Express
20
,
934
(
2012
).
23.
S.
Richter
,
F.
Zimmermann
,
A.
Tünnermann
, and
S.
Nolte
, “
Laser welding of glasses at high repetition rates – fundamentals and prospects
,”
Opt. Laser Technol.
83
,
59
66
(
2016
).
24.
D.
Hélie
,
M.
Bégin
,
F.
Lacroix
, and
R.
Vallée
, “
Reinforced direct bonding of optical materials by femtosecond laser welding
,”
Appl. Opt.
51
,
2098
(
2012
).
25.
M.
Vajdi
,
F.
Sadegh Moghanlou
,
F.
Sharifianjazi
,
M.
Shahedi Asl
, and
M.
Shokouhimehr
, “
A review on the Comsol multiphysics studies of heat transfer in advanced ceramics
,”
J. Compos. Compd.
2
,
35
43
(
2020
).
26.
C.
Bonacina
,
G.
Comini
,
A.
Fasano
, and
M.
Primicerio
, “
Numerical solution of phase-change problems
,”
Int. J. Heat Mass Transfer
16
,
1825
1832
(
1973
).
27.
M.
Dada
,
P.
Popoola
,
N.
Mathe
,
S.
Adeosun
, and
O.
Aramide
, “
2D numerical model for heat transfer on a laser deposited high entropy alloy baseplate using Comsol multiphysics
,”
Mater. Today: Proc.
50
,
2541
2546
(
2022
).
28.
A. N.
Samant
and
N. B.
Dahotre
, “
Laser machining of structural ceramics—A review
,”
J. Eur. Ceram. Soc.
29
,
969
993
(
2009
).
29.
A.
Ebrahimi
,
M.
Sattari
,
S. J. L.
Bremer
,
M.
Luckabauer
,
G. R. B. E.
Römer
,
I. M.
Richardson
,
C. R.
Kleijn
, and
M. J. M.
Hermans
, “
The influence of laser characteristics on internal flow behaviour in laser melting of metallic substrates
,”
Mater. Des.
214
,
110385
(
2022
).
30.
C.
Li
et al., “
Numerical simulation method of the multi-field coupling mechanism for laser cladding 316L powder
,”
Weld. World
66
, 423–444 (
2022
).
31.
C.
Li
,
D.
Zhang
,
X.
Gao
,
H.
Gao
, and
X.
Han
, “
Numerical simulation method of the multi-field coupling mechanism for laser cladding 316L powder
,”
Weld. World
66
,
423
440
(
2022
).
32.
A. V.
Smith
and
B. T.
Do
, “
Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm
,”
Appl. Opt.
47
,
4812
(
2008
).
33.
D.
Cha
and
D.
Axinte
, “
Transient thermal model of nanosecond pulsed laser ablation: Effect of heat accumulation during processing of semi-transparent ceramics
,”
Int. J. Heat Mass Transfer
173
,
121227
(
2021
).
34.
E.
Asghari
et al., “
Using JMatPro simulation to study the effect of heat treatment temperature on the dissolution of gamma-prime phase in Inconel 617 nickel-based superalloy
,”
Iran. J. Mater. Form.
10
,
44
54
(
2023
).
35.
V.
Amiri
and
H.
Naffakh-Moosavy
, “
Microstructural study of additively-manufactured carbon steel-stainless steel 316L - Inconel 625 functionally graded material: Simulation and experimental approaches
,”
J. Mater. Res. Technol.
31
,
1164
1170
(
2024
).
36.
C.
Li
,
X.
Han
,
D.
Zhang
,
X.
Gao
, and
T.
Jia
, “
Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding
,”
J. Adhes. Sci. Technol.
36
,
1894
1920
(
2022
).
37.
L.
Orazi
,
L.
Romoli
,
M.
Schmidt
, and
L.
Li
, “
Ultrafast laser manufacturing: From physics to industrial applications
,”
CIRP Ann.
70
,
543
566
(
2021
).
38.
D. W.
Lee
and
W. D.
Kingery
, “
Radiation energy transfer and thermal conductivity of ceramic oxides
,”
J. Am. Ceram. Soc.
43
,
594
607
(
1960
).
39.
S.
Mishra
and
V.
Yadava
, “
Laser beam MicroMachining (LBMM) – A review
,”
Opt. Lasers Engi.
73
,
89
122
(
2015
).
40.
S. K.
Sundaram
and
E.
Mazur
, “
Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses
,”
Nat. Mater.
1
,
217
224
(
2002
).
41.
T.
Yan
,
X.
Zhan
,
Q.
Gao
,
F.
Wang
, and
W.
Ling
, “
Influence of laser power on molten pool flow field of laser-MIG hybrid welded Invar alloy
,”
Opt. Laser Technol.
133
,
106539
(
2021
).
42.
M.
Sakakura
,
M.
Terazima
,
Y.
Shimotsuma
,
K.
Miura
, and
K.
Hirao
, “
Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse
,”
Opt. Express
15
,
16800
(
2007
).
43.
R. R.
Gattass
and
E.
Mazur
, “
Femtosecond laser micromachining in transparent materials
,”
Nat. Photonics
2
,
219
225
(
2008
).
44.
V. S.
Popov
,
V. D.
Mur
,
B. M.
Karnakov
, and
S. G.
Pozdnyakov
, “
On the relativistic generalization of Keldysh ionization theory
,”
Phys. Lett. A
358
,
21
26
(
2006
).
45.
B. M.
Karnakov
,
V. D.
Mur
,
S. V.
Popruzhenko
, and
V. S.
Popov
, “
Strong field ionization by ultrashort laser pulses: Application of the Keldysh theory
,”
Phys. Lett. A
374
,
386
390
(
2009
).
You do not currently have access to this content.