This study, investigated the powder flow field for multiangle laser cladding, bridging theoretical gaps in the repair of metal parts with tilted and complex surface, specifically those are immovable and nonrotatable. Initially, a multiangle computational fluid dynamics-discrete element method gas-powder coupling model was established. It can consider not only the continuity characteristics of gas as a fluid, the discreteness characteristics of powder as particles, but also the mutual influence relationship. Subsequently, the response surface method was used to explore the optimal combination of carrier argon gas rate (A), the powder-feeding rate (B), and the protective argon gas rate (C) at different deflection angles, with the powder collection rate as the optimization objective. Analysis of variance results for the powder collection rate indicated that the significance of the factors and their interaction terms were ranked as A > B > AB at 0° and 30°, A > B > BC at 60°, A > B > C > BC at 90°, and C > A > BC > AB at 120° and 150°. Furthermore, the relative errors between predicted and simulated values, as well as simulated and powder collection experimental values, the single-pass experimental values were within 2%, 3%, and 7%, indicating the model was valid and reliable. Finally, the optimal combinations of carrier argon gas rate, powder-feeding rate, and protective argon gas rate were obtained, achieving high powder collection rates. These research findings offer theoretical guidance for selecting and optimizing process parameters in multiangle laser cladding.

1.
Q. L.
Yuan
,
X. D.
Feng
,
J. J.
Cao
, and
Z. J.
Su
, “
Research progress in laser cladding technology
,”
Mater. Rep.
24
,
112
116
(
2010
).
2.
R.
Vilar
, “
Laser cladding
,”
J. Laser Appl.
11
,
64
79
(
1999
).
3.
N.
Tamanna
,
R.
Crouch
, and
S.
Naher
, “
Progress in numerical simulation of the laser cladding process
,”
Opt. Lasers Eng.
122
,
151
163
(
2019
).
4.
S.
Zekovic
,
R.
Dwivedi
, and
R.
Kovacevic
, “
Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition
,”
Int. J. Mach. Tools Manuf.
47
,
112
123
(
2007
).
5.
M. Y.
Chu
,
G. F.
Lian
,
M. P.
Yao
,
M. Y.
Feng
,
C. R.
Chen
, and
H.
Xu
, “
Numerical simulation and experimental investigation of gas-powder flow feed behavior in laser cladding with coaxial nozzle
,”
Int. J. Adv. Manuf. Technol.
122
,
881
894
(
2022
).
6.
X. C.
Yang
, “
Momentum and mass transferences of coaxial powder stream in laser manufacturing
,”
Chin. J. Lasers
35
,
1664
1679
(
2008
).
7.
N.
Yang
and
X. C.
Yang
, “
Numerical simulation of flow field of nozzle in laser cladding
,”
Chin. J. Lasers
35
,
452
455
(
2008
).
8.
P. J.
Lyu
,
J.
Ling
,
B. G.
Yan
,
L.
Zhu
,
J.
Yao
, and
K. Y.
Jiang
, “
Numerical simulation and experimental investigation of the effect of three-layer annular coaxial shroud on gas-powder flow in laser cladding
,”
J. Manuf. Process.
84
,
457
468
(
2022
).
9.
X. B.
Li
,
T.
Li
,
B. W.
Shi
,
D.
Wang
,
M.
Adnan
, and
H. T.
Lu
, “
The influence of substrate tilt angle on the morphology of laser cladding layer
,”
Surf. Coat. Technol.
391
,
125706
(
2020
).
10.
Q.
Chai
,
Z.
Wang
,
C.
Fang
,
X.
Yan
,
X. L.
Qiu
, and
Z. F.
Zhou
, “
Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding
,”
Surf. Coat. Technol.
422
,
127494
(
2021
).
11.
Y. H.
Qian
,
H.
Tan
, and
W. D.
Huang
, “
The deposition morphology of laser solid forming on the inclined surface
,”
Appl. Laser
35
,
53
57
(
2015
).
12.
X. H.
Xia
,
Y. D.
Gao
,
L.
Wang
,
Z. L.
Zhang
,
P.
Yi
,
T.
Wang
, and
B. T.
Chen
, “
Numerical simulation based radial laser cladding process optimisation for annular thin-walled parts
,”
Int. J. Eng. Syst. Mod. Simul.
15
,
228
239
(
2024
).
13.
C. P.
Paul
,
S. K.
Mishra
,
A.
Kumar
, and
L. M.
Kukreja
, “
Laser rapid manufacturing on vertical surfaces: Analytical and experimental studies
,”
Surf. Coat. Technol.
224
,
18
28
(
2013
).
14.
I.
Tabernero
,
A.
Lamikiz
,
E.
Ukar
,
L. N.
López de Lacalle
,
C.
Angulo
, and
G.
Urbikain
, “
Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding
,”
J. Mater. Proc. Technol.
210
,
2125
2134
(
2010
).
15.
S. K.
Chien
,
K. T.
Tsai
,
Y. H.
Li
,
Y. T.
Wu
, and
W. L.
Chen
, “
A simple and accurate 3D numerical model for laser cladding
,”
J. Mech.
36
,
19
33
(
2020
).
16.
H. L.
Fan
,
Y. B.
Liu
,
Z. W.
Wang
,
Z.
Zhao
,
R. H.
Han
,
M. J.
Zheng
, and
H. B.
Qi
, “
A multi-angle numerical model for laser cladding from the nozzle to cladding formation
,”
Opt. Laser Technol.
181
,
111802
(
2025
).
17.
Z. Z.
Yang
,
Cladding with Deflection Angle Study on Technology and Properties of Laser
(
Shijiazhuang Tiedao University
, Shijiazhuang,
2021
).
18.
R.
Guo
,
Y.
Zhao
,
L. J.
Cui
,
Y. H.
Cui
,
X. L.
Li
,
B.
Zheng
,
Y. L.
Cao
, and
W. H.
Zeng
,
Using Response Surface Methodology (RSM) to Optimize the Key Laser Processing Parameters for Laser Cladding of Grey Cast Iron
[
Lasers in Engineering (Old City Publishing)
, Zhengzhou,
2021
], Vol. 51.
19.
Y.
Javid
, “
Multi-response optimization in laser cladding process of WC powder on Inconel 718
,”
CIRP J. Manuf. Sci. Technol.
31
,
406
417
(
2020
).
20.
M.
Yao
,
X.
Chen
,
F.
Kong
, and
W.
Tong
, “
Process optimization of laser hot-wire cladding with high-power direct diode laser via the response surface methodology
,”
Int. J. Adv. Manuf. Technol.
120
,
8089
8103
(
2022
).
You do not currently have access to this content.