In the laser wire additive manufacturing process, the molten pool acts as the critical link between the wire and the deposited part. The heat transfer and flow behavior within the molten pool predominantly determine the quality of the final deposition. Under laser power ranging from 2400 to 3000 W, traverse speeds between 0.01 and 0.04 m/s, and wire feeding speeds from 0.03 to 0.08 m/s, three distinct flow states—single-swirl, double-swirl, and no-swirl—were observed with increasing heat input. Under the optimum process parameters, the molten pool with stable temperature distribution and orderly flow was obtained. In multilayer deposition, the implementation of a laser decay strategy mitigates steep temperature gradients, diminishes the Marangoni effect within the molten pool, and effectively reduces both heat accumulation and lateral flow. Consequently, the flow mode transitions from no-swirl to swirl, and the maximum flow velocity decreases by 40%.

1.
Y.
Ding
,
M.
Akbari
, and
R.
Kovacevic
, “
Process planning for laser wire-feed metal additive manufacturing system
,”
Int. J. Adv. Manuf. Technol.
95
,
355
365
(
2018
).
2.
A.
Da Silva
,
J.
Frostevarg
,
J.
Volpp
, and
A. F. H.
Kaplan
, “
Additive manufacturing by laser-assisted drop deposition from a metal wire
,”
Mater. Des.
209
,
109987
(
2021
).
3.
J.
Xin
,
D.
Wu
,
C.
Shen
,
L.
Wang
,
X.
Hua
,
N.
Ma
,
S.
Tashiro
, and
M.
Tanaka
, “
Multi-physical modelling of alloy element transportation in wire arc additive manufacturing of a γ-TiAl alloy
,”
Int. J. Therm. Sci.
179
,
107641
(
2022
).
4.
A.
Heralić
,
A. K.
Christiansson
, and
B.
Lennartson
, “
Height control of laser metal-wire deposition based on iterative learning control and 3D scanning
,”
Opt. Lasers Eng.
50
,
1230
1241
(
2012
).
5.
A.
Uriondo
,
M.
Esperon-Miguez
, and
S.
Perinpanayagam
, “
The present and future of additive manufacturing in the aerospace sector: A review of important aspects
,”
Proc. Inst. Mech. Eng., Part G
229
,
2132
2147
(
2015
).
6.
W.
Huang
,
S.
Chen
,
J.
Xiao
,
X.
Jiang
, and
Y.
Jia
, “
Laser wire-feed metal additive manufacturing of the Al alloy
,”
Opt. Laser Technol.
134
,
106627
(
2021
).
7.
W.
He
,
W.
Shi
,
J.
Li
, and
H.
Xie
, “
In-situ monitoring and deformation characterization by optical techniques; part I: Laser-aided direct metal deposition for additive manufacturing
,”
Opt. Lasers Eng.
122
,
74
88
(
2019
).
8.
J.
Du
,
X.
Wang
,
H.
Bai
,
G.
Zhao
, and
Y.
Zhang
, “
Numerical analysis of fused-coating metal additive manufacturing
,”
Int. J. Therm. Sci.
114
,
342
351
(
2017
).
9.
W.
Peng
,
S.
Jiguo
,
Z.
Shiqing
, and
W.
Gang
, “
Control of wire transfer behaviors in hot wire laser welding
,”
Int. J. Adv. Manuf. Technol.
83
,
2091
2100
(
2016
).
10.
W.
Liwei
,
S.
Yingchao
,
L.
Zhimin
,
W.
Dianlong
,
X.
Jun
, and
Y.
Dejun
, “
Numerical simulation and experiments on the behavior and mechanism of laser-assisted droplet transfer
,”
Opt. Lasers Eng.
122
,
303
311
(
2019
).
11.
K. D.
Cole
,
M. R.
Yavari
, and
P. K.
Rao
, “
Computational heat transfer with spectral graph theory: Quantitative verification
,”
Int. J. Therm. Sci.
153
,
106383
(
2020
).
12.
A. J.
Pinkerton
, “
Lasers in additive manufacturing
,”
Opt. Laser Technol.
78
,
25
32
(
2016
).
13.
Z.
Yan
,
W.
Liu
,
Z.
Tang
,
N.
Zhang
,
M.
Li
, and
H.
Zhang
, “
Review on thermal analysis in laser-based additive manufacturing
,”
Opt. Laser Technol.
106
,
427
441
(
2018
).
14.
M. L.
Griffith
,
M. E.
Schlienger
,
L. D.
Harwell
et al, “
Understanding thermal behavior in the LENS process
,”
Mater. Des.
20
,
107
113
(
1999
).
15.
L.
Tang
and
R. G.
Landers
, “
Melt pool temperature control for laser metal deposition processes—Part I: Online temperature control
,”
J. Manuf. Sci. Eng.
132
,
011010
(
2010
).
16.
F. E.
Bock
,
M.
Froend
,
J.
Herrnring
,
J.
Enz
,
N.
Kashaev
, and
B.
Klusemann
, “
Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation
,”
AIP Conf. Proc.
1960
,
140004
(
2018
).
17.
Z.
Nie
,
G.
Wang
,
J. D.
McGuffin-Cawley
,
B.
Narayanan
,
S.
Zhang
,
D.
Schwam
,
M.
Kottman
, and
Y.
Rong
, “
Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing
,”
J. Mater. Process. Technol.
235
,
171
186
(
2016
).
18.
M.
Graf
,
A.
Hälsig
,
K.
Höfer
,
B.
Awiszus
, and
P.
Mayr
, “
Thermo-mechanical modelling of wire-arc additive manufacturing (WAAM) of semi-finished products
,”
Metals
8
,
1009
(
2018
).
19.
V. A.
Hosseini
,
E.
Cederberg
,
K.
Hurtig
, and
L.
Karlsson
, “
A physical simulation technique for cleaner and more sustainable research in additive manufacturing
,”
J. Cleaner Prod.
285
,
124910
(
2021
).
20.
C.
Zhang
,
Y.
Li
,
M.
Gao
, and
X.
Zeng
, “
Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source
,”
Mater. Sci. Eng. A
711
,
415
423
(
2018
).
21.
Y.
Wang
,
C.
Zhang
,
J.
Lu
,
L.
Bai
,
Z.
Zhao
, and
J.
Han
, “
Weld reinforcement analysis based on long-term prediction of molten pool image in additive manufacturing
,”
IEEE Access
8
,
69908
69918
(
2020
).
22.
H.
Yeung
,
Z.
Yang
, and
L.
Yan
, “
A meltpool prediction based scan strategy for powder bed fusion additive manufacturing
,”
Addit. Manuf.
35
,
101383
(
2020
).
23.
M.
Dinovitzer
,
X.
Chen
,
J.
Laliberte
,
X.
Huang
, and
H.
Frei
, “
Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure
,”
Addit. Manuf.
26
,
138
146
(
2019
).
24.
P. S.
Cook
and
A. B.
Murphy
, “
Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress
,”
Addit. Manuf.
31
,
100909
(
2020
).
25.
J.
Romano
,
L.
Ladani
, and
M.
Sadowski
, “
Laser additive melting and solidification of Inconel 718: Finite element simulation and experiment
,”
JOM
68
,
967
977
(
2016
).
26.
J.
Xiong
,
Y.
Lei
, and
R.
Li
, “
Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures
,”
Appl. Therm. Eng.
126
,
43
52
(
2017
).
27.
Y. S.
Lee
and
D. F.
Farson
, “
Surface tension-powered build dimension control in laser additive manufacturing process
,”
Int. J. Adv. Manuf. Technol.
85
,
1035
1044
(
2016
).
28.
X.
Zhou
,
H.
Zhang
,
G.
Wang
, and
X.
Bai
, “
Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing
,”
Int. J. Heat Mass Transfer
103
,
521
537
(
2016
).
29.
Z. C.
Fang
,
Z. L.
Wu
,
C. G.
Huang
, and
C.-W.
Wu
, “
Review on residual stress in selective laser melting additive manufacturing of alloy parts
,”
Opt. Laser Technol.
129
,
106283
(
2020
).
30.
H. L.
Wei
,
F. Q.
Liu
,
L.
Wei
, and
W. H.
Liao
, “
Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing
,”
J. Mater. Sci. Technol.
77
,
196
208
(
2021
).
31.
X.
Xie
,
J.
Zhou
, and
J.
Long
, “
Numerical study on molten pool dynamics and solute distribution in laser deep penetration welding of steel and aluminum
,”
Opt. Laser Technol.
140
,
107085
(
2021
).
32.
C.
Wu
, “
Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding
,”
J. Mech. Eng.
54
,
1
15
(
2018
).
33.
S.
Wei
,
G.
Wang
,
Y. C.
Shin
, and
Y.
Rong
, “
Comprehensive modeling of transport phenomena in laser hot-wire deposition process
,”
Int. J. Heat Mass Transfer
125
,
1356
1368
(
2018
).
You do not currently have access to this content.