In this paper, we discuss double-pulse laser peening (DPLP) as surface enhancement technology. Although single-pulse laser peening (SPLP) has yielded excellent results across various applications, its processing performance and efficiency are limited. The DPLP technique involves two laser pulses with a controlled irradiation interval and intensity, enhancing laser absorption through the plasma plume and generating high-amplitude laser-induced shock waves. This study involved conducting DPLP experiments on stainless steel, comparing the outcomes with those of conventional SPLP to assess DPLP’s functionality. After the initial prepulse irradiation, the subsequent main pulse was timed and irradiated onto the stainless steel. We evaluated the surface hardness to ascertain the impact of laser peening. The findings indicated that the surface hardness achieved with DPLP was up to 64% greater than that with SPLP. Additionally, the surface hardness achieved through DPLP depended on the delay time between the pulses and the intensity of the initial prepulse. These findings suggest that DPLP can significantly enhance surface hardness, providing a potential pathway for improving material performance in various industrial applications. Furthermore, simulation experiments of DPLP were performed using a one-dimensional simulation code that calculates the laser-matter interaction during the peening process. The pressure profiles generated by the simulation closely matched the experimentally derived hardness profiles, confirming the simulation’s ability to predict the mechanical effects induced by DPLP on the target sample and assist in further optimization of the DPLP process.

1.
P.
Peyre
and
R.
Fabbro
, “
Laser shock processing: A review of the physics and applications
,”
Opt. Quantum Electron.
27
,
1213
1229
(
1995
).
2.
K.
Ding
and
L.
Ye
, “
Chapters 1 & 2
,” in
Laser Shock Peening: Performance and Process Simulation
(
Woodhead Publishing
, Cambridge, UK,
2006
).
3.
Y.
Ye
,
Y.
Zhang
,
T.
Huang
,
S.
Zou
,
Y.
Dong
,
H.
Ding
,
V. K.
Vasudevan
, and
C.
Ye
, “
A critical review of laser shock peening of aircraft engine components
,”
Adv. Eng. Mater.
25
,
2201451
(
2023
).
4.
R.
Sundar
,
P.
Ganesh
,
R. K.
Gupta
,
G.
Ragvendra
,
B. K.
Pant
,
V.
Kain
,
K.
Ranganathan
,
R.
Kaul
, and
K. S.
Bindra
, “
Laser shock peening and its applications: A review
,”
Lasers Manuf. Mater. Process.
6
,
424
463
(
2019
).
5.
N.
Mukai
,
Y.
Sano
,
M.
Yoda
,
I.
Chida
,
T.
Uehara
, and
T.
Yamamoto
, “
Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening-remote delivery of high-power pulsed laser
,”
Rev. Laser Eng.
33-7
,
444
451
(
2005
) (in Japanese).
6.
V. I.
Babushok
,
F. C.
DeLucia
Jr.
,
J. L.
Gottfried
,
C. A.
Munson
, and
A. W.
Miziolek
, “
Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement
,”
Spectrochim. Acta Part B
61
,
999
1014
(
2006
).
7.
J.
Mildner
,
C.
Sarpe
,
N.
Götte
,
M.
Wollenhaupt
, and
T.
Baumert
, “
Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds
,”
Appl. Surf. Sci.
302
,
291
298
(
2014
).
8.
A. C.
Forsman
,
P. S.
Banks
,
M. D.
Perry
,
E. M.
Campbell
,
A. L.
Dodell
, and
M. S.
Armas
, “
Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals
,”
J. Appl. Phys.
98
,
033302
(
2005
).
9.
A.
Momeni
and
M. H.
Mahdieh
, “
Double-pulse nanosecond laser ablation of silicon in water
,”
Laser Phys. Lett.
12
,
076102
(
2015
).
10.
M. A.
Jafarabadi
and
M. H.
Mahdieh
, “
Investigation of phase explosion in aluminum induced by nanosecond double pulse technique
,”
Appl. Surf. Sci.
346
,
263
269
(
2015
).
11.
M. A.
Jafarabadi
and
M. H.
Mahdieh
, “
Single and double long pulse laser ablation of aluminum induced in air and water ambient
,”
Appl. Surf. Sci.
396
,
732
739
(
2017
).
12.
D.
Courapied
,
L.
Berthe
,
P.
Peyre
,
F.
Coste
,
J. P.
Zou
, and
A. M.
Sautivet
, “
Laser-delayed double shock-wave generation in water-confinement regime
,”
J. Laser Appl.
27
,
S29101
(
2015
).
13.
E. I.
Ageev
,
V.Yu.
Bychenkov
,
A. A.
Ionin
,
S. I.
Kudryashov
,
A. A.
Petrov
,
A. A.
Samokhvalov
, and
V. P.
Veiko
, “
Double-pulse femtosecond laser peening of aluminum alloy AA5038: Effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness
,”
Appl. Phys. Lett.
109
,
211902
(
2016
).
14.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
,
L.
Tollier
, and
E.
Bartnicki
, “
Shock waves from a water-confined laser-generated plasma
,”
J. Appl. Phys.
82
,
2826
–2832 (
1997
).
15.
C.
Gautier
,
P.
Fichet
,
D.
Menut
,
J. L.
Lacour
,
D.
L’Hermite
, and
J.
Dubessy
, “
Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B
59
,
975
986
(
2004
).
16.
P. A.
Benedetti
,
G.
Cristoforetti
,
S.
Legnaioli
,
V.
Palleschi
,
L.
Pardini
,
A.
Salvetti
, and
E.
Tognoni
, “
Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration
,”
Spectrochim. Acta Part B
60
,
1392
1401
(
2005
).
17.
A.
Bogaerts
,
Z.
Chen
, and
D.
Autrique
, “
Double pulse laser ablation and laser induced breakdown spectroscopy: A modeling investigation
,”
Spectrochim. Acta Part B
63
,
746
754
(
2008
).
18.
Y.
Sano
,
K.
Akita
,
K.
Masaki
,
Y.
Ochi
,
I.
Altenberger
, and
B.
Scholtes
, “
Laser peening without coating as a surface enhancement technology
,”
J. Laser Micro/Nanoeng.
1
,
161
166
(
2006
).
19.
M.
Heya
,
H.
Furukawa
,
M.
Tsuyama
, and
H.
Nakano
, “
Simulations of the effects of laser wavelength, pulse duration, and power density on plume pressure generation using a one-dimensional simulation code for laser shock processing
,”
J. Appl. Phys.
129
,
235108
(
2021
).
20.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
, and
E.
Bartnicki
, “
Wavelength dependent of laser shock-wave generation in the water-confinement regime
,”
J. Appl. Phys.
85
,
7552
7555
(
1999
).
21.
L.
Berthe
,
A.
Sollier
,
P.
Peyre
,
C.
Carboni
,
E.
Bartnicki
, and
R.
Fabbro
, “
Physics of shock-wave generation by laser-plasma in water confinement regime
,” in
Proceeding of the SPIE (Society of Photographic Instrumentation Engineers): High-Power Laser Ablation III
,
Santa Fe
, 24–28 April 2000 (SPIE, Bellingham, WA,
2000
), pp.
511
520
.
22.
M.
Tsuyama
,
Y.
Kodama
,
Y.
Miyamoto
,
I.
Kitawaki
,
M.
Tsukamoto
, and
H.
Nakano
, “
Effects of laser peening parameters on plastic deformation in stainless steel
,”
J. Laser Micro/Nanoeng.
11
,
227
–231 (
2016
).
23.
W.
Braisted
and
R.
Brockman
, “
Finite element simulation of laser shock peening
,”
Int. J. Fatigue
21
,
719
724
(
1999
).
24.
X.
Wang
,
B.
Chen
,
F.
Zhang
,
L.
Liu
,
S.
Xu
,
H.
Mei
,
X.
Lai
, and
L.
Ren
, “
Numerical simulation on laser shock peening of B4C-TiB2 composite ceramics
,”
Materials
16
,
1033
(
2023
).
You do not currently have access to this content.