Laser surface alloying is a surface modification technique that melts coat powder and substrate with high laser power density. This study aims to improve the properties of Hastelloy X, a Ni-based superalloy used for gas turbine components, by applying a NiCoCrAlY coating using laser surface alloying. The purpose of this study was to investigate the process parameters including laser scanning speed, laser power, and stand-off distance on the microstructure and microhardness of the alloying zones. The findings indicate that different microstructures were formed in different alloying zones such as cellular, columnar, and equiaxed. The results also revealed the presence of β and γ phases in the dendritic and interdendritic regions. The microhardness at the interface was higher than that of the other alloying areas due to the increased content of the Mo element. This study concluded that the properties of Hastelloy X can be improved by using NiCoCrAlY powder through a laser alloying process.

1.
A.
Khorram
, “
Laser cladding of IN713 LC superalloy with Amdry 997 powder: Microstructural evolution
,”
Laser Phys.
33
,
046101
(
2023
).
2.
K.
Minet
,
A.
Saharan
,
A.
Loesser
, and
N.
Raitanen
, “
Superalloys powders, process monitoring in additive manufacturing
,” in
Additive Manufacturing for the Aerospace Industry
(
Elsevier
,
New York
,
2019
), pp.
163
185
.
3.
A.
Khorram
and
M.
Taheri
, “
Surface modification of IN713 LC superalloy with Metco 204NS by laser surface alloying
,”
Laser Phys.
32
,
106001
(
2022
).
4.
J.
Yao
,
L.
Wang
,
Q.
Zhang
,
F.
Kong
,
C.
Lou
, and
Z.
Chen
, “
Surface laser alloying of 17-4PH stainless steel steam turbine blades
,”
Opt. Laser Technol.
40
,
838
843
(
2008
).
5.
A.
Khorram
,
A.
Davoodi Jamaloei
, and
R.
Sepehrnia
, “
Analysis of solidification crack behavior for Amdry 997 coating on Inconel 713 LC superalloy by laser cladding process
,”
Optik
264
,
169407
(
2022
).
6.
P.
Jiang
,
X.
He
,
X. A.
Li
,
L.
Yu
, and
H.
Wang
, “
Wear resistance of a laser surface alloyed Ti–6Al–4V alloy
,”
Surf. Coat. Technol.
130
,
24
28
(
2000
).
7.
S.
Zhang
,
C.
Wu
,
C.
Zhang
,
M.
Guan
, and
J.
Tan
, “
Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance
,”
Opt. Laser Technol.
84
,
23
31
(
2016
).
8.
J.
Dutta Majumdar
and
I.
Manna
, “
Laser surface alloying of copper with chromium: I. Microstructural evolution
,”
Mater. Sci. Eng. A
268
,
216
226
(
1999
).
9.
G.
Goswami
,
D.
Kumar
,
A.
Grover
,
A.
Pappachan
, and
M.
Totlani
, “
Control of defects during laser surface alloying
,”
Surf. Eng.
15
,
65
70
(
1999
).
10.
Y.
Yang
and
J.
Hu
, “
Effects of laser power density on the microstructure and microhardness of Ni–Al alloyed layer by pulsed laser irradiation
,”
Opt. Laser Technol.
43
,
138
142
(
2011
).
11.
A. A.
Siddiqui
,
A.
Dubey
, and
C.
Paul
, “
Geometrical characteristics in laser surface alloying of a high-entropy alloy
,”
Lasers Eng.
43
,
237
259
(
2019
).
12.
I.
Smolina
and
K.
Kobiela
, “
Characterization of wear and corrosion resistance of stellite 6 laser surfaced alloyed (LSA) with rhenium
,”
Coatings
11
,
292
(
2021
).
13.
H.
Yu
,
X.
Meng
,
Z.
Wang
, and
C.
Chen
, “
Influence of scanning speed on the microstructure and wear resistance of laser alloying coatings on Ti–6Al–4V substrate
,”
Materials
15
,
5819
(
2022
).
14.
Q.
Qiao
,
L.
Tam
,
V.
Cristino
, and
C.
Kwok
, “
Surface hardness and corrosion behavior of laser surface-alloyed Ti–6Al–4V with copper
,”
Surf. Coat. Technol.
444
,
128663
(
2022
).
15.
A.
Khorram
,
A.
Davoodi Jamaloei
, and
A.
Jafari
, “
Surface transformation hardening of Ti–5Al–2.5 Sn alloy by pulsed Nd: YAG laser: An experimental study
,”
Int. J. Adv. Manuf. Technol.
100
,
3085
3099
(
2019
).
16.
S.
Kou
,
Welding Metallurgy
(
Wiley
,
New York
,
2003
).
17.
C.
Bezençon
,
A.
Schnell
, and
W.
Kurz
, “
Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding
,”
Scr. Mater.
49
,
705
709
(
2003
).
18.
S.
Jelvani
,
R.
Shoja Razavi
,
M.
Barekat
,
M. R.
Dehnavi
, and
M.
Erfanmanesh
, “
Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy
,”
Opt. Laser Technol.
120
,
105761
(
2019
).
19.
C.
Nickel
,
ASM Specialty Handbook
(
ASM International
,
Material Park
,
2000
).
20.
S.
Zhang
,
Y.
Lei
,
Z.
Chen
,
P.
Wei
,
W.
Liu
,
S.
Yao
, and
B.
Lu
, “
Effect of laser energy density on the microstructure and texture evolution of Hastelloy-X alloy fabricated by laser powder bed fusion
,”
Materials
14
,
4305
(
2021
).
21.
M.
Tobar
,
J. M.
Amado
,
A.
Yáñez
,
J. C.
Pereira
, and
V.
Amigó
, “
Laser cladding of MCrAlY coatings on stainless steel
,”
Phys. Procedia
56
,
276
283
(
2014
).
22.
J. C.
Pereira Falcón
,
A.
Echeverría
,
C. R.
Afonso
,
J. C.
Zambrano Carrullo
, and
V.
Amigó Borrás
, “
Microstructure assessment at high temperature in NiCoCrAlY overlay coating obtained by laser metal deposition
,”
J. Mater. Res. Technol.
8
,
1761
1772
(
2019
).
23.
J. C.
Pereira
,
J.
Zambrano
,
M.
Tobar
,
A.
Yañez
, and
V.
Amigó
, “
High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel
,”
Surf. Coat. Technol.
270
,
243
248
(
2015
).
24.
J. C.
Pereira
,
J.
Zambrano
,
E.
Rayón
,
A.
Yañez
, and
V.
Amigó
, “
Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding: The influence of the Ni, Co and Al content
,”
Surf. Coat. Technol.
338
,
22
31
(
2018
).
25.
A.
Khorram
, “
Microstructural evolution of laser clad Stellite 31 powder on Inconel 713 LC superalloy
,”
Surf. Coat. Technol.
423
,
127633
(
2021
).
26.
P.
Kobryn
,
E.
Moore
, and
S. L.
Semiatin
, “
The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti–6Al–4V
,”
Scr. Mater.
43
,
299
305
(
2000
).
27.
G.
Ng
,
A.
Jarfors
,
G.
Bi
, and
H.
Zheng
, “
Porosity formation and gas bubble retention in laser metal deposition
,”
Appl. Phys. A
97
,
641
649
(
2009
).
28.
X.
Zhan
,
C.
Qi
,
Z.
Gao
,
D.
Tian
, and
Z.
Wang
, “
The influence of heat input on microstructure and porosity during laser cladding of Invar alloy
,”
Opt. Laser Technol.
113
,
453
461
(
2019
).
You do not currently have access to this content.