To realize a carbon-neutral society, it is necessary to shift from gasoline-powered vehicles to electric vehicles. Electric vehicles use copper components such as coil motors and batteries for which copper joining technology is important. Additive manufacturing is one of the most essential technologies for the next generation of manufacturing. Therefore, the technology for forming pure copper layer on a pure copper substrate is important. Laser metal deposition (LMD) is one of the additive manufacturing technologies. A blue diode laser is expected to be effective in shaping pure copper parts because light absorptance of pure copper at blue light is higher than that of near-infrared light. Thus, a multibeam LMD system with the blue diode laser in which metal powder was supplied perpendicular to the processing point and multiple lasers were irradiated from the surroundings was developed for additively manufactured pure copper. In our previous study, we succeeded in forming a pure copper layer on a pure copper substrate at a speed of 1.5 mm/s with blue diode lasers. However, an increase in processing speed was necessary for industrial application. It is considered that the improvement of energy density at the processing point and the control of heat input to the powder and the substrate by lasers are essential to improve the processing speed. Therefore, in this study, we designed an optical system with ten times higher energy density and calculated the heat input to the powder to form a pure copper layer at a speed of 10 mm/s or faster.

1.
K. V.
Wong
and
A.
Hernandez
, “
A review of additive manufacturing
,”
Int. Scholarly Res. Not.
2012
,
208760
(
2012
).
2.
K.
Takenaka
,
Y.
Sato
,
N.
Yoshida
,
M.
Yoshitani
,
M.
Heya
, and
M.
Tsukamoto
, “
Additive manufactured of pure copper by blue diode laser induced selective laser melting
,”
J. Laser Appl.
34
,
042041
(
2022
).
3.
X.
Yan
,
C.
Chang
,
D.
Dong
,
S.
Gao
,
W.
Ma
,
M.
Liu
,
H.
Liao
, and
S.
Yin
, “
Microstructure and mechanical properties of pure copper manufactured by selective laser melting
,”
Mater. Sci. Eng. A
789
,
139615
(
2020
).
4.
C.
Ledford
,
C.
Rock
,
P.
Carriere
,
P.
Frigola
,
D.
Gamzina
, and
T.
Horn
, “
Characteristics and processing of hydrogen-treated copper powders for EB-PBF additive manufacturing
,”
Appl. Sci.
9
,
3993
(
2019
).
5.
E.
Sharabian
,
M.
Leary
,
D.
Fraser
, and
S.
Gulizia
, “
Electron beam powder bed fusion of copper components: A review of mechanical properties and research opportunities
,”
Int. J. Adv. Manuf. Technol.
122
,
513
532
(
2022
).
6.
P. C.
King
,
G.
Bae
,
S. H.
Zahiri
,
M.
Jahedi
, and
C.
Lee
, “
An experimental and finite element study of cold spray copper impact onto two aluminum substrates
,”
J. Therm. Spray Technol.
19
,
620
634
(
2010
).
7.
M.
Fukumoto
,
H.
Wada
,
K.
Tanabe
,
M.
Yamada
,
E.
Yamaguchi
,
A.
Niwa
,
M.
Sugimoto
, and
M.
Izawa
, “
Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process
,”
J. Therm. Spray Technol.
16
,
643
650
(
2007
).
8.
T.
Schopphoven
,
A.
Gasser
, and
G.
Backes
, “
EHLA: Extreme high-speed laser material deposition: Economical and effective protection against corrosion and wear
,”
Laser Technik J.
14
,
26
29
(
2017
).
9.
K.
Asano
,
M.
Tsukamoto
,
Y.
Sechi
,
Y.
Sato
,
S. I.
Masuno
,
R.
Higashino
,
T.
Hara
,
M.
Sengoku
, and
M.
Yoshida
, “
Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers
,”
Opt. Laser Technol.
107
,
291
296
(
2018
).
10.
H.
Siva Prasad
,
F.
Brueckner
,
J.
Volpp
, and
A. F.
Kaplan
, “
Laser metal deposition of copper on diverse metals using green laser sources
,”
Int. J. Adv. Manuf. Technol.
107
,
1559
1568
(
2020
).
11.
K.
Takenaka
,
Y.
Sato
,
S.
Fujio
,
K.
Nishida
,
R.
Ito
,
E.
Hori
,
S.
Kato
,
M.
Suwa
,
S.
Uno
,
K.
Tojo
, and
M.
Tsukamoto
, “
Bead-on-plate welding of pure copper with a 1.5-kW high-power blue diode laser
,”
Weld. World
67
,
99
107
(
2023
).
12.
M. S.
Zediker
,
R. D.
Fritz
,
M. J.
Finuf
, and
J. M.
Pelaprat
, “
Laser welding components for electric vehicles with a high-power blue laser system
,”
J. Laser Appl.
32
,
022038
(
2020
).
13.
T.
Nakaaze
,
M.
Tsukamoto
,
Y.
Sato
,
Y.
Funada
,
D.
Tanigawa
,
M.
Sengoku
,
K.
Asano
,
R.
Higashino
, and
N.
Abe
, “
Development of 100 W blue direct diode laser system for cladding of copper
,” in
International Congress on Applications of Lasers & Electro-Optics
(
AIP Publishing
,
2016
).
14.
T.
Hara
,
Y.
Sato
,
R.
Higashino
,
Y.
Funada
,
T.
Ohkubo
,
K.
Morimoto
,
N.
Abe
, and
M.
Tsukamoto
, “
Pure copper layer formation on pure copper substrate using multi-beam laser cladding system with blue diode lasers
,”
Appl. Phys. A
126
,
1
6
(
2020
).
15.
K.
Takenaka
,
Y.
Sato
,
K.
Ono
,
Y.
Funada
, and
M.
Tsukamoto
, “
Pure copper layer formation on stainless-steel and aluminum substrate with a multibeam laser metal deposition system with blue diode laser
,”
J. Laser Appl.
33
,
042033
(
2021
).
16.
K.
Ono
,
Y.
Sato
,
Y.
Takazawa
,
Y.
Morimoto
,
K.
Takenaka
,
Y.
Yamashita
,
Y.
Funada
,
N.
Abe
, and
M.
Tsukamoto
, “
Development of high intensity multibeam laser metal deposition system with blue diode lasers for additively manufacturing of copper rod
,”
J. Laser Appl.
33
,
042014
(
2021
).
You do not currently have access to this content.