Pure copper has antimicrobial effect, and the development of pure copper coating technology for product surfaces is needed to prevent the spread of infections. To achieve high antimicrobial performance in coatings, it is essential to form a coating with high copper purity and minimal defects. In this study, we attempted to form a pure copper coating layer on a SS304 substrate using multibeam directed energy deposition with blue diode lasers. In the coating layer formation process, multiple bead layers are overlapped to form a smooth surface and two different types of joining is conducted simultaneously: the similar material joining area with the remelted previous layer, and the dissimilar-material joining area with the substrate. However, it was challenging to conduct this process for SS304 and pure copper due to their significantly different thermal properties. Therefore, we varied the hatching distance to control the heat input to both joining areas and investigated the effect on the quality of the coating layer. The results showed that there is an optimal ratio of similar and dissimilar joining areas, at which a high-quality coating layer with few voids and low dilution is formed. Furthermore, antimicrobial tests showed that the pure copper coating layer formed in this study exhibited the antimicrobial performance equivalent to those of a pure copper plate.

1.
G.
Grass
,
C.
Rensing
, and
M.
Solioz
, “
Metallic copper as an antimicrobial surface
,”
Appl. Environ. Microbiol.
77
,
1541
1547
(
2011
).
2.
J.
Konieczny
and
Z.
Rdzawski
, “
Antibacterial properties of copper and its alloys
,”
Arch. Mater. Sci Eng.
56
,
53
60
(
2012
).
3.
The Japan Institute of Metals and Materials
,
Metal Handbook
(
Maruzen
, Tokyo,
2004
).
4.
H.
Michels
,
W.
Moran
, and
J.
Michel
, “
Antimicrobial properties of copper alloy surfaces with a focus on hospital-acquired infections
,”
Int. J. Metalcast.
2
,
47
56
(
2008
).
5.
O.
Sharifahmadian
,
H. R.
Salimijazi
,
M. H.
Fathi
,
J.
Mostaghimi
, and
L.
Pershin
, “
Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings
,”
Surf. Coat. Technol.
233
,
74
79
(
2013
).
6.
N. N. C.
Isa
,
Y.
Mohd
,
M. H. M.
Zaki
, and
S. A. S.
Mohamad
, “
Characterization of copper coating electrodeposited on stainless steel substrate
,”
Int. J. Electrochem. Sci.
12
,
6010
6021
(
2017
).
7.
Y.
Zhuang
,
S.
Zhang
,
K.
Yang
,
L.
Ren
, and
K.
Dai
, “
Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection
,”
J. Biomed. Mater. Res.
108
,
484
495
(
2020
).
8.
N.
Bharadishettar
,
K. U.
Bhat
, and
D.
Bhat Panemangalore
, “
Coating technologies for copper based antimicrobial active surfaces: A perspective review
,”
Metals
11
,
711
(
2021
).
9.
S.
Guo
,
Y.
Lu
,
S.
Wu
,
L.
Liu
,
M.
He
,
C.
Zhao
,
Y.
Gan
,
J.
Lin
,
J.
Luo
,
X.
Xu
, and
J.
Lin
, “
Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys
,”
Mater. Sci. Eng. C
72
,
631
640
(
2017
).
10.
D. H.
Jung
,
A.
Sharma
,
K. H.
Kim
,
Y. C.
Choo
, and
J. P.
Jung
, “
Effect of current density and plating time on Cu electroplating in TSV and low alpha solder bumping
,”
J. Mater. Eng. Perform.
24
,
1107
1115
(
2015
).
11.
F.
Hanna
,
Z. A.
Hamid
, and
A. A.
Aal
, “
Controlling factors affecting the stability and rate of electroless copper plating
,”
Mater. Lett.
58
,
104
109
(
2004
).
12.
D.
Qadir
,
R.
Sharif
,
R.
Nasir
,
A.
Awad
, and
H. A.
Mannan
, “
A review on coatings through thermal spraying
,”
Chem. Pap.
78
,
71
91
(
2024
).
13.
T.
Schopphoven
,
A.
Gasser
,
K.
Wissenbach
, and
P.
Poprawe
, “
Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying
,”
J. Laser Appl.
28
,
022501
(
2016
).
14.
C. L.
Tien
, “
Special issue ‘advanced coating technology by physical vapor deposition and applications’
,”
Coatings
13
,
467
(
2023
).
15.
R.
Gordon
, “
Chemical vapor deposition of coatings on glass
,”
J. Non-Cryst. Solids
218
,
81
91
(
1997
).
16.
C. L.
Romanò
,
S.
Scarponi
,
E.
Gallazzi
,
D.
Romanò
, and
L.
Drago
, “
Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama
,”
J. Orthopaedic Surgery Res.
10
,
1
11
(
2015
).
17.
M.
Hans
,
J. C.
Támara
,
S.
Mathews
,
B.
Bax
,
A.
Hegetschweiler
,
R.
Kautenburger
,
M.
Solioz
, and
F.
Mücklich
, “
Laser cladding of stainless steel with a copper–silver alloy to generate surfaces of high antimicrobial activity
,”
Appl. Surf. Sci.
320
,
195
199
(
2014
).
18.
R.
Ghosh
,
O.
Swart
,
S.
Westgate
,
B. L.
Miller
, and
M. Z.
Yates
, “
Antibacterial copper–hydroxyapatite composite coatings via electrochemical synthesis
,”
Langmuir
35
,
5957
5966
(
2019
).
19.
K.
Zhang
,
S.
Wang
,
W.
Liu
, and
X.
Shang
, “
Characterization of stainless steel parts by laser metal deposition shaping
,”
Mater. Design
55
,
104
119
(
2014
).
20.
S.
Chowdhury
and
N.
Arunachalam
, “
Development of copper clad on pure titanium for an improved frictional characteristics and antibacterial properties
,”
Mater. Lett.
357
,
135610
(
2024
).
21.
K.
Asano
,
M.
Tsukamoto
,
Y.
Sechi
,
Y.
Sato
,
S.
Masuno
,
R.
Higashino
,
T.
Hara
,
M.
Sengoku
, and
M.
Yoshida
, “
Laser metal deposition of pure copper on stainless steel with blue and IR diode laser
,”
Opt. Laser Technol.
107
,
291
296
(
2018
).
22.
K.
Takenaka
,
Y.
Sato
,
K.
Ono
,
Y.
Funada
, and
M.
Tsukamoto
, “
Pure copper layer formation on stainless-steel and aluminum substrate with a multibeam laser metal deposition system with blue diode laser
,”
J. Laser Appl.
33
,
042033
(
2021
).
23.
K.
Ono
,
Y.
Sato
,
Y.
Takazawa
,
Y.
Morimoto
,
K.
Takenaka
,
Y.
Yamashita
,
Y.
Funada
,
N.
Abe
, and
M.
Tsukamoto
, “
Development of high intensity multibeam laser metal deposition system with blue diode lasers for additively manufacturing of copper rod
,”
J. Laser Appl.
33
,
042014
(
2021
).
24.
K.
Morimoto
,
Y.
Sato
,
K.
Takenaka
,
Y.
Funada
,
Y.
Hayashi
,
N.
Abe
, and
M.
Tsukamoto
, “
Effect of particle size distribution on pure copper layer formation in a multi-beam laser cladding system with pure copper powder and two blue diode lasers
,”
Appl. Phys. A
129
,
12
(
2023
).
25.
Y.
Takazawa
,
Y.
Sato
,
K.
Takenaka
,
Y.
Yamashita
,
T.
Kunimine
, and
M.
Tsukamoto
, “
High speed coating for pure copper by multi-beam laser metal deposition method with high intensity blue diode lasers
,”
J. Laser Appl.
35
,
012029
(
2023
).
26.
Y.
Sato
,
M.
Tsukamoto
,
T.
Shobu
,
Y.
Funada
,
Y.
Yamashita
,
T.
Hara
,
M.
Sengoku
,
Y.
Sakon
,
T.
Ohkubo
,
M.
Yoshida
, and
N.
Abe
, “
In situ x-ray observations of pure-copper layer formation with blue direct diode lasers
,”
Appl. Surf. Sci.
480
,
861
867
(
2019
).
27.
The Laser Society of Japan
,
Laser Handbook
(
Ohmsha
, Tokyo,
1982
).
You do not currently have access to this content.