Laser beam microwelding is a precise technique for joining miniature metal components with high feed rates, which is crucial for productivity. However, high feed rates provoke humping formation—periodic beadlike protuberances along the weld seam—that compromise weld integrity. While humping has been associated with the keyhole transition from a narrow to an elongated shape using standard laser intensity distributions (e.g., Gaussian, top-hat), the impact of complex beam profiles, like ring-shaped intensity distributions, remains less understood. In this work, the influence of core-only, ring-only, and superimposed core-ring intensity distributions on humping formation during laser beam microwelding is investigated by means of synchrotron x-ray imaging. Single-track experiments on stainless steel (1.4404) at 1000 mm/s reveal that the keyhole geometry shifts from deep and narrow with core-only power input to shallow and elongated with ring-only power input. Using a superimposed core-ring intensity distribution (Pc = 300 W, Pr = 600 W) results in a U-shaped capillary and the reduction of the humping amplitude by nearly 80% (from 45.61 μm with core-only to 10.29 μm). The additional laser power comes with the tripling of the melt pool width (from 81 μm with core-only to 263 μm) likely decreasing the melt flow velocity. The reduced variability of the capillary length present for the superimposed intensity distribution further indicates a stabilized evaporation behavior. This work provides valuable insights into mitigating humping formation during laser beam microwelding of stainless steel at elevated feed rates using core-ring intensity distributions.

1.
NOW
,
Technologischer Deep-Dive|Die Bipolarplatte der PEM-Brennstoffzelle
(Nationale Organisation Wasserstoff- und Brennstoffzellen Technologie GmbH (NOW),
2022
).
2.
A.
Patschger
and
J.
Bliedtner
, “
Constraints and optimization of the laser microwelding process of thin metal foils
,”
J. Laser Appl.
29
,
022408
(
2017
).
3.
T. C.
Nguyen
,
D. C.
Weckman
,
D. A.
Johnson
, and
H. W.
Kerr
, “
High speed fusion weld bead defects
,”
Sci. Technol. Weld. Join.
11
,
618
633
(
2006
).
4.
C. E.
Albright
and
S.
Chiang
, “
High-speed laser welding discontinuities
,”
J. Laser Appl.
1
,
18
24
(
1988
).
5.
B. J.
Bradstreet
, “
Effect of surface tension and metal flow on weld bead formation
,”
Weld. J.
47
(7),
314s
322s
(
1968
).
6.
K.
Nishiguchi
and
K.
Matsuyama
, “
Bead formation in high-speed gas-shielded metal-arc-welding
,” in
Proceedings of the 2nd International Symposium on "Advanced welding technology," Osaka, Japan, August
,
1975
, Japan Welding Society, Paper 2-2-(5).
7.
S.
Tsukamoto
,
H.
Irie
,
M.
Inagaki
, and
T.
Hashimoto
, “
Effect of focal position on humping bead formation in electron beam welding
,”
Trans. Natl. Res. Ins. Metals
25
,
62
67
(
1983
).
8.
R.
Fabbro
,
S.
Slimani
,
Frederic
, and
F.
Briand
, “
Analysis of the various melt pool hydrodynamic regimes observed during CW Nd-Yag deep penetration laser welding
,”
in
International Congress on Applications of Lasers & Electro-Optics
(
Laser Institute of America
,
Orlando
,
FL
,
2007
), p.
802
.
9.
S.
Neumann
,
T.
Seefeld
, and
M.
Schlif
, “
Influence of material and process parameters on the humping effect
,” in
Proceedings of the ICALEO 2008: 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing
, Temecula, CA,
2008
.
10.
A.
Patschger
,
M.
Seiler
, and
J.
Bliedtner
, “
Influencing factors on humping effect in laser welding with small aspect ratios
,”
J. Laser Appl.
30
,
032409
(
2018
).
11.
P.
Berger
,
H.
Hügel
,
A.
Hess
,
R.
Weber
, and
T.
Graf
, “
Understanding of humping based on conservation of volume flow
,”
Phys. Procedia
12
,
232
240
(
2011
).
12.
G.
Shannon
, “
Laser welding of sheet steel
,”
Ph.D. thesis
,
University of Liverpool
,
1993
.
13.
U.
Gratzke
,
P. D.
Kapadia
,
J.
Dowden
,
J.
Kroos
, and
G.
Simon
, “
Theoretical approach to the humping phenomenon in welding processes
,”
J. Phys. D: Appl. Phys.
25
,
1640
1647
(
1992
).
14.
B.
Xue
,
B.
Chang
,
S.
Wang
,
R.
Hou
,
P.
Wen
, and
D.
Du
, “
Humping formation and suppression in high-speed laser welding
,”
Materials
15
, 2420 (
2022
).
15.
S.
Cornell
and
K.
Hartke
, “
Humping reduction methods for high speed laser welding
,” in
Proceedings of the ICALEO 2009: 28th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing
,
Orlando, FL, USA
,
1 November 2009
(
Laser Institute of America
,
Orlando
,
FL
,
2009
), pp.
985
989
.
16.
E. N.
Reinheimer
,
R.
Weber
, and
T.
Graf
, “
Influence of the capillary geometry on the weld seam quality during high-speed laser welding
,”
Procedia CIRP
111
,
431
434
(
2022
).
17.
M.
Schmidt
,
K.
Cvecek
,
J.
Duflou
,
F.
Vollertsen
,
C. B.
Arnold
, and
M. J.
Matthews
,
Dynamic Beam Shaping—Improving Laser Materials Processing Via Feature Synchronous Energy Coupling
(
CIRP Annals
, Thessaloniki, Greece,
2024
).
18.
Q.
Li
,
M.
Luo
,
Z.
Mu
,
A.
Huang
, and
S.
Pang
, “
Improving laser welding via decreasing central beam density with a hollow beam
,”
J. Manuf. Process.
73
,
939
947
(
2022
).
19.
L.
Wang
,
M.
Yao
,
X.
Gao
,
F.
Kong
,
J.
Tang
, and
J. M.
Kim
, “
Keyhole stability and surface quality during novel adjustable-ring mode laser (ARM) welding of aluminum alloy
,”
Opt. Laser Technol.
161
,
109202
(
2023
).
20.
S.
Hollatz
,
M.
Hummel
,
M.-C.
Lach
,
A.
Olowinsky
,
A.
Gillner
,
C.
Häfner
,
F.
Beckmann
, and
J.
Moosmann
, “
Influence of ring-shaped laser beam during welding of AW-5083 and AW-6082
,” in
High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XII
, edited by
K. R.
Kleine
and
S.
Kaierle
(
SPIE
, San Francisco, CA,
2023
), p.
24
.
21.
L.
Yang
,
S.
Geng
,
P.
Jiang
,
Y.
Wang
, and
J.
Xiong
, “
Investigation on the keyhole/molten pool dynamic behavior during adjustable ring-mode laser welding of medium-thick aluminum alloy
,”
Int. J. Therm. Sci.
196
,
108723
(
2024
).
22.
F.
Nahr
,
D.
Bartels
,
R.
Rothfelder
, and
M.
Schmidt
, “
Influence of novel beam shapes on laser-based processing of high-strength aluminium alloys on the basis of EN AW-5083 single weld tracks
,”
J. Manuf. Mater. Process.
7
,
93
(
2023
).
23.
J.
Li
,
S.
Geng
,
Y.
Wang
,
C.
Wang
, and
P.
Jiang
, “
Mitigation of porosity in adjustable-ring-mode laser welding of medium-thick aluminum alloy
,”
Int. J. Heat Mass Transfer
227
,
125514
(
2024
).
24.
M.
Hummel
,
C.
Meier
,
A.
Olowinsky
,
A.
Gillner
,
F.
Beckmann
,
J.
Moosmann
, and
C.
Häfner
, “
In situ synchrotron observation of the vapor capillary geometry in laser welding of copper with 1030 nm and 515 nm laser beam sources
,” in
High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XII
, edited by
K. R.
Kleine
and
S.
Kaierle
(
SPIE
, San Francisco, CA,
2023
), p.
19
.
25.
V.
van Nieuwenhove
,
J.
de Beenhouwer
,
F.
de Carlo
,
L.
Mancini
,
F.
Marone
, and
J.
Sijbers
, “
Dynamic intensity normalization using eigen flat fields in x-ray imaging
,”
Opt. Express
23
,
27975
27989
(
2015
).
26.
S. M.
Pizer
,
E. P.
Amburn
,
J. D.
Austin
,
R.
Cromartie
,
A.
Geselowitz
,
T.
Greer
,
B.
ter Haar Romeny
,
J. B.
Zimmerman
, and
K.
Zuiderveld
, “
Adaptive histogram equalization and its variations
,”
Comput. Gr. Image Process.
39
,
355
368
(
1987
).
You do not currently have access to this content.