Carbon/carbon composites (C/Cs) are extensively utilized as structural materials and functional materials in the aerospace industry. Laser processing technology is an effective means of precision manufacturing C/Cs parts, with the advantages of no mechanical impact and high efficiency. Accurately predicting the material removal of C/Cs during laser processing is of great significance for the precision manufacturing of C/Cs parts. However, the numerical simulation models that can directly display the microstructure of C/Cs are still inadequate, and measuring the sublimation temperatures of two different phases of carbon is challenging. This paper establishes a three-dimensional microscopic heterogeneous finite element (FE) model of C/Cs, and the FE simulation of quasi-continuous wave (QCW) laser ablation of C/Cs is optimized using the restart method taking into account the residual temperature. Combining the optimized FE model, the material parameters of C/Cs are inverted using response surface methodology and genetic algorithm, resulting in the sublimation temperatures of the fiber phase being 4029.01 K and the matrix phase being 3481.86 K. After these parameters are substituted into the FE model, the resulting simulations are then compared with the experiments of QCW laser processing C/Cs, which reveals high correspondence between simulated morphology and experimental data, with the relative error of predicted ablation depth not exceeding 6.169%. The revised FE model can guide the laser processing of C/Cs, and the inverted material parameters can provide references for the theoretical study of the laser processing of C/Cs.

1.
M.
Hasan
,
J.
Zhao
, and
Z.
Jiang
, “
Micromanufacturing of composite materials: A review
,”
Int. J. Extreme Manuf.
1
,
012004
(
2019
).
2.
Y.
Zhang
,
Y.
Zhang
,
T.
Wang
,
Y.
Cui
, and
K.
Liu
, “
Experimental study on performances of carbon seal and finger seal under high-speed and high-pressure condition
,”
IOP Conf. Ser.: Mater. Sci. Eng.
382
,
022044
(
2018
).
3.
G.
Zhao
,
B.
Zhao
,
W.
Ding
,
L.
Xin
,
Z.
Nian
,
J.
Peng
,
N.
He
, and
J.
Xu
, “
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: A comparative analysis
,”
Int. J. Extreme Manuf.
6
,
022007
(
2024
).
4.
S.
Gruber
,
L.
Stepien
,
L.
Gerdt
,
E.
Lopez
,
J.
Kieser
,
F.
Brueckner
,
C.
Leyens
, and
C.
Bratt
, “
Process development for laser powder bed fusion of GRCop-42 using a 515 nm laser source
,”
J. Laser Appl.
35
,
042078
(
2023
).
5.
J. R.
Ferreira
,
N. L.
Coppini
, and
F. Levy
Neto
, “
Characteristics of carbon–carbon composite turning
,”
J. Mater. Process. Technol.
109
,
65
71
(
2001
).
6.
Z.
Feng
,
Z.
Fan
,
Q.
Kong
,
X.
Xiong
, and
B.
Huang
, “
Effect of high temperature treatment on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity
,”
New Carbon Mater.
29
,
357
362
(
2014
).
7.
C.
Shan
,
X.
Zhang
,
J.
Dang
, and
Y.
Yang
, “
Rotary ultrasonic drilling of needle-punched carbon/carbon composites: Comparisons with conventional twist drilling and high-speed drilling
,”
Int. J. Adv. Manuf. Technol.
98
,
189
200
(
2018
).
8.
C.
Shan
,
X.
Lin
,
X.
Wang
,
J.
Yan
, and
D.
Cui
, “
Defect analysis in drilling needle-punched carbon–carbon composites perpendicular to nonwoven fabrics
,”
Adv. Mech. Eng.
7
,
1
11
(
2015
).
9.
C.
Shan
,
J.
Dang
,
J.
Yan
, and
X.
Zhang
, “
Three-dimensional numerical simulation for drilling of 2.5D carbon/carbon composites
,”
Int. J. Adv. Manuf. Technol.
93
,
2985
2996
(
2017
).
10.
H.
Liu
,
Y.
Yan
,
J.
Cui
,
Y.
Geng
,
T.
Sun
,
X.
Luo
, and
W.
Zong
, “
Recent advances in design and preparation of micro diamond cutting tools
,”
Int. J. Extreme Manuf.
6
,
062008
(
2024
).
11.
Q.
Shen
,
G.
Yang
,
C.
Xiao
,
H.
Li
,
Q.
Song
, and
J.
Lu
, “
Control of multi-scale cracking for improvement of the reliability of carbon/carbon composites via design of interlaminar stress
,”
Compos. Struct.
297
,
115985
(
2022
).
12.
Y. H.
Guu
,
H.
Hocheng
,
N. H.
Tai
, and
S. Y.
Liu
, “
Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites
,”
J. Mater. Sci.
36
,
2037
2043
(
2001
).
13.
J.
Ma
,
H.
Zhang
,
T.
Ye
,
S.
Wang
,
Z.
Yang
, and
Z.
Jia
, “
New method of continuous-wave laser ablation for processing microgroove with variable cross-section
,”
Opt. Laser Technol.
170
,
110292
(
2024
).
14.
H.
Liu
,
J.
Xu
,
H.
He
,
C.
Wu
,
J.
Liu
,
X.
He
, and
X.
Wang
, “
Optimization of micropore fabrication on the surface of ultrathick polyimide film based on picosecond UV laser
,”
J. Laser Appl.
35
,
042032
(
2023
).
15.
S. I.
Kuznetsov
,
D. M.
Gureev
,
D. S.
Levin
, and
A. L.
Petrov
, “
Laser-beam pattern cutting of carbon-carbon composites
,”
Proc. SPIE
4644
,
83
88
(
2002
).
16.
D. E.
Hedges
and
J. S.
Meserole
, “
Demonstration and evaluation of carbon-carbon ion optics
,”
J. Propul. Power.
10
,
255
261
(
1994
).
17.
F. A.
Al-Sulaiman
,
B. S.
Yilbas
, and
M.
Ahsan
, “
CO2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure
,”
J. Mater. Process. Technol.
173
,
345
351
(
2006
).
18.
Q.
Liu
,
L.
Zhang
,
F.
Jiang
,
J.
Liu
,
L.
Cheng
,
H.
Li
, and
Y.
Wang
, “
Laser ablation behaviors of SiC–ZrC coated carbon/carbon composites
,”
Surf. Coat. Technol.
205
,
4299
4303
(
2011
).
19.
L.
Geng
,
X.
Liu
,
Q.
Fu
,
S.
Cheng
, and
H.
Li
, “
Laser ablative behavior of C/C modified by Si reactive infiltration
,”
Carbon
168
,
650
658
(
2020
).
20.
Y.
Tong
,
S.
Bai
,
Y.
Hu
,
X.
Liang
,
Y.
Ye
, and
Q.
Qin
, “
Laser ablation resistance and mechanism of Si–Zr alloyed melt infiltrated C/C–SiC composite
,”
Ceram. Int.
44
,
3692
3698
(
2018
).
21.
Q.
Shen
,
T.
Wang
,
Q.
Song
,
F.
Ye
,
H.
Li
, and
M. W.
Fu
, “
Unraveling of the laser drilling of carbon/carbon composites: Ablation mechanisms, shape evolution, and damage evaluation
,”
Int. J. Mach. Tools Manuf.
184
,
103978
(
2023
).
22.
M.
Nakano
,
S.
Hosoda
, and
K.
Nishiyama
, “
Sputtering yield of carbon-carbon composite due to xenon ion bombardment in ion engines
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
58
,
213
219
(
2015
).
23.
A.
Alghamdi
,
A.
Khan
,
P.
Mummery
, and
M.
Sheikh
, “
The characterisation and modelling of manufacturing porosity of a 2-D carbon/carbon composite
,”
J. Compos. Mater.
48
,
2815
2829
(
2014
).
24.
X.
Dang
,
X.
Yin
,
X.
Fan
,
Y.
Ma
,
J.
Wang
,
P.
Ju
, and
H.
Song
, “
Microstructural evolution of carbon fiber reinforced SiC-based matrix composites during laser ablation process
,”
J. Mater. Sci. Technol.
35
,
2919
2925
(
2019
).
25.
L. Y.
Xu
,
J. R.
Lu
,
K. M.
Li
, and
J.
Hu
, “
Removal mechanism of CFRP by laser multi direction interaction
,”
Opt. Laser Technol.
143
,
107281
(
2021
).
26.
M.
Afshari
,
M.
Khandaei
, and
R.
Shoja Razavi
, “
Prediction of the primary dendritic arm spacing in the laser metal deposition of Inconel 718 superalloy using the numerical and experimental techniques
,”
J. Laser Appl.
35
,
022013
(
2023
).
27.
M.
Esmaeili
,
A. S.
Arabanian
,
S.
Najafi
, and
R.
Massudi
, “
Numerical study of ultrashort laser-induced microjet formation on the metal film based on the Navier–Stokes equation
,”
J. Laser Appl.
35
,
042002
(
2023
).
28.
E.
Fitzer
and
L. M.
Manocha
,
Carbon Reinforcements and Carbon/Carbon Composites
(
Springer Science & Business Media
,
New York
,
1998
).
29.
S.
Rao
,
A.
Sethi
,
A. K.
Das
,
N.
Mandal
,
P.
Kiran
,
R.
Ghosh
,
A. R.
Dixit
, and
A.
Mandal
, “
Fiber laser cutting of CFRP composites and process optimization through response surface methodology
,”
Mater. Manuf. Process.
32
,
1612
1621
(
2017
).
You do not currently have access to this content.