Nowadays, AISI 304 stainless steel plays a crucial role in industry. However, stainless steel exhibits limited wear resistance as it is used in parts with relative motion. Laser treatment emerges as a promising approach to improve its superficial properties. Using a laser as a heat source presents unique properties for heating surfaces, as the first atomic layers of the material absorb the radiation from the laser beam. In this study, we used a low-cost 100 W CO2 laser with carbon black powder to treat the surface of AISI 304 steels. In addition, the reflectance of irradiation on steel is 90%. We used carbon black powder as a photo-absorbing material for radiation to overcome this obstacle. The characterization included field emission gun–scanning electron microscopy, energy dispersive x ray, microhardness, and pin-on reciprocation tribometer. The results showed a significant increase in surface hardness after laser treatment compared to the untreated substrate at a magnitude of 3.8 times. Elemental mapping analysis revealed carbon's presence on the substrate's surface. In addition to increasing surface hardness, we observed a decrease in the friction coefficient of the laser-treated samples compared to the reference substrate. Finally, it could be concluded that carbon black powder had a triple function; it acted as a photo-absorbent material, a carbon source to increase surface hardness, and a solid lubricant. These results show the predictions of using a low-cost CO2 laser with carbon black powder as an efficient, versatile, and fast alternative.

1.
Y.
Liu
,
Y.
Ding
,
L.
Yang
,
R.
Sun
,
T.
Zhang
, and
X.
Yang
, “
Research and progress of laser cladding on engineering alloys: A review
,”
J. Manuf. Processes
66
, 341–363 (
2021
).
2.
A.
Zaffora
,
F.
Di Franco
, and
M.
Santamaria
, “
Corrosion of stainless steel in food and pharmaceutical industry
,”
Curr. Opin. Electrochem.
29
, 100760 (
2021
).
3.
J. D.
Majumdar
,
A.
Kumar
, and
L.
Li
, “
Direct laser of SiC dispersed AISI 316 l stainless steel
,”
Tribol. Int.
42
,
750
753
(
2009
).
4.
M.
Milad
,
N.
Zreiba
,
F.
Elhalouani
, and
C.
Baradai
, “
The effect of cold work on structure and properties of AISI 304 stainless steel
,”
J. Mater. Process. Technol.
203
,
80
85
(
2008
).
5.
J. M.
Alves
,
L. P.
Brandao
, and
A. S.
Paula
,
J. Matér.
24
, 3 (
2019
).
6.
A. P.
Tschiptschin
and
C. E.
Pinedo
, “
Structure and properties of austenitic stainless steel AISI 316L grade ASTM F138 nitrided under plasma at low temperature
,”
Rem: Rev. Esc. Minas
63
,
137
141
(
2010
).
7.
T. S.
Seleka
and
S. L.
Pityana
, “
Laser surface melting of 304 stainless steel for pitting corrosion resistance improvement
,”
J. South. Afr. Inst. Min. Metall.
107
, 151–154 (
2007
).
8.
W. M.
Steen
and
J.
Mazumder
,
Laser Material Processing
(
Springer
,
London
,
2010
).
9.
L.
Zhu
,
P.
Xue
,
Q.
Lan
,
G.
Meng
,
Y.
Ren
,
Z.
Yang
,
P.
Xu
, and
Z.
Liu
, “
Recent research and development status of laser cladding: A review
,”
Opt. Laser Technol.
138
, 106915 (
2021
).
10.
A. I.
Katsamas
and
G. N.
Haidemenopoulos
, “
Laser-beam carburizing of low-alloy steels
,”
Surf. Coat. Technol.
139
, 183–191 (
2001
).
11.
G. Vasconcelos, D. C. Chagas, D. C. Campos, and A. N. Dias, “
Covering with carbon black and thermal treatment by CO2 laser surfaces of AISI 4340 steel
,” in
CO2 Laser: Optimisation and Application
(
IntechOpen
, Swtizerland,
2012
), pp.
275
282
.
12.
D. C.
Chagas
,
A. N.
Dias
,
E. F.
Antunes
, and
G.
Vasconcelos
,
Aplicação de Lubrificantes Sólidos (Negro de Fumo) e Tratamento Térmico Superficial de Têmpera em Matrizes de aço AISI 4340 via Laser de Co2, IV SICI - Anais do Seminário Anual de Iniciação Científica e Pós-Graduação do IEAv
(IEAv,
São José dos Campos, São Paulo
,
2010
), Vol. 1, ISSN 2175-2729.
13.
E.
Dames
,
V.
Rohani
, and
L.
Fulcheri
, “
Chapter five - plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production
,” in
Advances in Chemical Engineering
(
Academic
,
New York
,
2023
), Vol. 61, pp.
253
317
.
14.
L.
Shasha
,
W.
Yuhang
, and
Z.
Weiping
, “
Microstructure and wear resistance of laser clad cobalt-based composite coating on TA15 surface
,”
Rare Metal. Mat. Eng.
43
,
1041
1046
(
2014
).
15.
S. H.
Oliveira
,
Tratamento Térmico com Laser de CO2 de Anéis Automotivos Recobertos com Negro de Fumo
(
ITA
,
São José dos Campos
,
2014
).
16.
B.
Haldar
and
P.
Saha
, “
Identifying defects and problems in laser cladding and suggestions of some remedies for the same
,”
Mater. Today: Proc.
5
,
13090
13101
(
2018
).
17.
M.
Li
,
K.
Huang
, and
X.
Yi
, “
Crack formation mechanisms and control methods of laser cladding coatings: A review
,”
Coatings
(
2023
).
18.
I.
Hutchings
and
P.
Shipway
,
Friction and Wear of Engineering Materials
, 2nd ed. (
Elsevier Science
,
New York
,
2017
).
19.
T.
Yamaguchi
and
H.
Hagino
, “
Effects of the ambient oxygen concentration on WC-12 Co cermet coatings fabricated by laser cladding
,”
Opt. Las. Technol.
139
,
106922
(
2021
).
20.
A. J.
Abdalla
,
G.
de Vasconcelos
,
A. G.
Portela
,
A. S.
Cardoso
,
C. A.
Baptista
, “
Laser surface treatment of SAE 4340 and 300 M steels
,” in
Materials Science Forum
(
Trans Tech Publications, Ltd
, Switzerland,
2015
), Vol. 805, pp.
204
209
.
21.
R. M. S.
Custódio
,
Efeitos Da Estruturação E Deposição De Negro De Fumo Com O Uso De Laser Em Um Aço Sae 4340 Submetido Ao Desgaste
(
Instituto Tecnológico de Aeronáutica
,
São José dos Campos
,
2021
).
22.
V.
Gopi
,
R.
Sellamuthu
, and
S.
Arul
, “
Measurement of hardness, wear rate and coefficient of friction of surface refined Al-Cu alloy
,”
Proced. Enginer.
97
,
1355
1360
(
2014
).
23.
G.
Vasconcelos
,
G. N. P.
da Costa
,
D. C.
Chagas
,
C. B.
Mello
, and
E. F.
Antunes
, “
Covering steel surface with carbon black by CO2 laser
,” in
Materials Science Forum
(
Trans Tech Publications, Ltd
, Switzerland,
2010
), Vol. 660–661, pp.
249
252
.
24.
V. A.
Korotkov
, “
Crack and wear resistance of hard coatings
,”
Russ. Eng. Res.
41
,
1131
1134
(
2021
).
You do not currently have access to this content.