VDM Alloy 780 is a novel nickel-based superalloy using γ′-precipitation hardening, thus enabling application temperatures of up to 750 °C. However, when using laser metal deposition (LMD) as a manufacturing process, the resulting parts show anisotropic mechanical properties and directional grain growth along the buildup direction. These effects as well as the grain coarsening caused by low cooling rates lead to reduced mechanical properties compared to wrought material. In order to achieve comparable mechanical properties, LMD-manufactured components must be subjected to postheat treatments. In this work, the influence of postheat treatments on the mechanical properties and microstructure of powder-based LMD VDM Alloy 780 components consisting of solution annealing and double aging is investigated. Additionally, hot isostatic pressing (HIP) is applied to determine the influence on the porosity and the mechanical properties. The specimens are examined metallographically using optical microscopy and scanning electron microscopy. The grain orientation along the microstructure is determined by electron backscatter diffraction analysis of the heat treatment stages. To evaluate the mechanical properties, tensile tests in perpendicular and parallel directions as well as macrohardness measurements are carried out. The results show that the ultimate tensile strength and the macrohardness were increased by postheat treatments. The porosity in the component can be reduced by the HIP process, thus improving the mechanical properties further.

1.
T.
Wohlers
,
R. I.
Campbell
,
O.
Diegel
,
J.
Kowen
, and
N.
Mostow
,
Wohlers Report 2021: 3D Printing and Additive Manufacturing Global State of the Industry
(
Wohlers Associates
,
Fort Collins, CO
,
2021
).
2.
A.
Bohlen
,
H.
Freiße
,
M.
Hunkel
, and
F.
Vollertsen
, “
Additive manufacturing of tool steel by laser metal deposition
,”
Procedia CIRP
74
,
192
195
(
2018
).
3.
B.
Graf
,
A.
Marko
,
T.
Petrat
,
A.
Gumenyuk
, and
M.
Rethmeier
, “
3D laser metal deposition: Process steps for additive manufacturing
,”
Weld. World
62
,
877
883
(
2018
).
4.
J. M.
Amado
,
J.
Montero
,
M. J.
Tobar
, and
A.
Yáñez
, “
Laser cladding of Ni-WC layers with graded WC content
,”
Phys. Procedia
56
,
269
275
(
2014
).
5.
D.
Janicki
,
J.
Górka
, and
A.
Kotarska
, “
Laser cladding of Inconel 625-based composite coatings
,”
Weld. Technol. Rev.
90
, 6–11 (
2018
).
6.
B.
Graf
,
A.
Gumenyuk
, and
M.
Rethmeier
, “
Laser metal deposition as repair technology for stainless steel and titanium alloys
,”
Phys. Procedia
39
,
376
381
(
2012
).
7.
Y.
Zeng
,
L.
Li
,
W.
Huang
,
Z.
Zhao
,
W.
Yang
, and
Z.
Yue
, “
Effect of thermal cycles on laser direct energy deposition repair performance of nickel-based superalloy: Microstructure and tensile properties
,”
Int. J. Mech. Sci.
221
,
107173
(
2022
).
8.
P.
Paulus
,
Y.
Ruppert
,
M.
Vielhaber
, and
J.
Griebsch
, “
Powder-based laser metal deposition of VDM alloy 780: Strategy development for efficient buildup of thin-walled components
,”
Proc. SPIE
12414
,
1241408
(
2023
).
9.
R. M.
Kindermann
,
M. J.
Roy
,
R.
Morana
, and
J. A.
Francis
, “
Effects of microstructural heterogeneity and structural defects on the mechanical behaviour of wire + arc additively manufactured Inconel 718 components
,”
Mater. Sci. Eng. A
839
,
142826
(
2022
).
10.
E. M.
Fayed
,
M.
Saadati
,
D.
Shahriari
,
V.
Brailovski
,
M.
Jahazi
, and
M.
Medraj
, “
Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion
,”
Sci. Rep.
11
,
2020
(
2021
).
11.
S.
Sui
,
C.
Zhong
,
J.
Chen
,
A.
Gasser
,
W.
Huang
, and
J. H.
Schleifenbaum
, “
Influence of solution heat treatment on microstructure and tensile properties of Inconel 718 formed by high-deposition-rate laser metal deposition
,”
J. Alloys Compd.
740
,
389
399
(
2018
).
12.
A.
Du Plessis
and
E.
Macdonald
, “
Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure
,”
Addit. Manuf.
34
,
101191
(
2020
).
13.
K.
Gruber
,
W.
Stopyra
,
K.
Kobiela
,
B.
Madejski
,
M.
Malicki
, and
T.
Kurzynowski
, “
Mechanical properties of Inconel 718 additively manufactured by laser powder bed fusion after industrial high-temperature heat treatment
,”
J. Manuf. Process.
73
,
642
659
(
2022
).
14.
W. M.
Tucho
and
V.
Hansen
, “
Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments
,”
J. Mater. Sci.
54
,
823
839
(
2019
).
15.
Y.
Zhang
,
L.
Yang
,
T.
Chen
,
W.
Zhang
,
X.
Huang
, and
J.
Dai
, “
Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy
,”
Opt. Laser Technol.
97
,
172
179
(
2017
).
16.
P.
Paulus
,
Y.
Ruppert
,
M.
Vielhaber
, and
J.
Griebsch
, “
Process map definition for laser metal deposition of VDM alloy 780 on the 316L substrate
,”
J. Manuf. Mater. Process.
7
,
86
(
2023
).
17.
M. L. B.
Möller
,
Prozessmanagement für das Laser-Pulver-Auftragschweißen
(
Springer
,
Berlin
,
2021
).
18.
K.
Moussaoui
,
W.
Rubio
,
M.
Mousseigne
,
T.
Sultan
, and
F.
Rezai
, “
Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties
,”
Mater. Sci. Eng., A
735
,
182
190
(
2018
).
19.
H.
Peng
,
Y.
Shi
,
S.
Gong
,
H.
Guo
, and
B.
Chen
, “
Microstructure, mechanical properties and cracking behaviour in a γ′-precipitation strengthened nickel-base superalloy fabricated by electron beam melting
,”
Mater. Des.
159
,
155
169
(
2018
).
20.
L.-S.-B.
Ling
,
Z.
Yin
,
Z.
Hu
,
J.-H.
Liang
,
Z.-Y.
Wang
,
J.
Wang
, and
B.-D.
Sun
, “
Effects of the γ″-Ni3Nb phase on mechanical properties of Inconel 718 superalloys with different heat treatments
,”
Materials (Basel, Switzerland)
13
151 (
2019
).
21.
A.
Ariaseta
,
A. K.
Khan
,
J.
Andersson
, and
O.
Ojo
, “
Microstructural analysis of K-TIG-welded new Ni-based superalloy VDM alloy 780
,”
Metall. Mater. Trans. A
55
, 2952–2976 (
2024
).
22.
A.
Saboori
,
G.
Marchese
,
A.
Aversa
, E. Bassini, F. Mazzucato, A. Valente, M. Lombardi, D. Ugues, S. Biamino, and P. Fino, “
Effect of heat treatment on microstructural evolution of additively manufactured Inconel 718 and cast alloy
,” in
Proceedings of the Euro PM2019, Maastricht, Netherlands
, 13–16 October 2019.
23.
T.
Gundgire
,
S.
Goel
,
U.
Klement
, and
S.
Joshi
, “
Response of different electron beam melting produced alloy 718 microstructures to thermal post-treatments
,”
Mater. Charact.
167
,
110498
(
2020
).
24.
J.
Pistor
and
C.
Körner
, “
A novel mechanism to generate metallic single crystals
,”
Sci. Rep.
11
,
24482
(
2021
).
25.
F.
Kümmel
,
A.
Kirchmayer
,
C.
Solís
,
M.
Hofmann
,
S.
Neumeier
, and
R.
Gilles
, “
Deformation mechanisms in Ni-based superalloys at room and elevated temperatures studied by in situ neutron diffraction and electron microscopy
,”
Metals
11
,
719
(
2021
).
You do not currently have access to this content.