Tensegrity structures are used for lightweight design. They consist of several elements that bear compressive or tensile loads. Ropes and cables are usually used to bear occurring tensile loads, but wires can also be used. The process of laser wire bonding was investigated in a previous study using a coaxial deposition welding head and a continuous wave laser beam source. Wires made of G4Si1 with a diameter of 1 mm were bonded to a mild steel substrate, and a process window for a laser wire bonding process with sufficient bonding quality was determined. Based on these findings, tensile tests were carried out to investigate the influence of the process parameters (stickout, laser power, wire feed rate, and bonding processing time) and the resulting geometry of the bonding zone on the maximum force. As a reference, tensile tests were carried out with the wire material in its original state.

1.
W.
Gilewski
,
J.
Kłosowska
, and
P.
Obara
, “
Applications of tensegrity structures in civil engineering
,”
Procedia Eng.
111
,
242
248
(
2015
).
2.
A.
Micheletti
and
P.
Podio-Guidugli
, “
Seventy years of tensegrities (and counting)
,”
Arch. Appl. Mech.
92
,
2525
2548
(
2022
).
3.
V.
Gomez-Jauregui
,
A.
Carrillo-Rodriguez
,
C.
Manchado
, and
P.
Lastra-Gonzalez
, “
Tensegrity applications to architecture, engineering and robotics: A review
,”
Appl. Sci.
13
,
8669
(
2023
).
4.
H.
Zhou
,
A.
Chang
,
J.
Fan
,
J.
Cao
,
B.
An
,
J.
Xie
,
J.
Yao
,
X.
Cui
, and
Y.
Zhang
, “
Copper wire bonding: A review
,”
Micromachines
14
,
1612
(
2023
).
5.
Stored Energy Concepts Inc.
, see https://storedenergyconcepts.com/products/bridgewire-welding/ for “Bridgewire Welding.” Retrieved August 16, 2024.
6.
L.
Budde
,
M.
Spengler
,
N.
Schwarz
,
J.
Hermsdorf
,
H.
Ahlers
, and
S.
Kaierle
, “
Investigation of laser wire bonding for the fabrication of tensegrity structures
,”
Procedia CIRP
124C
, 388–393 (
2024
).
7.
L.
Budde
,
K.
Biester
,
M.
Lammers
,
J.
Hermsdorf
,
S.
Kaierle
, and
L.
Overmeyer
, “
Influence of process parameters on single weld seam geometry and process stability in laser hot-wire cladding of AISI 52100
,”
Adv. Ind. Manuf. Eng.
7
,
100122
(
2023
).
8.
F.
Liu
,
S.-S.
Ji
,
T.
Shi
,
L.
Wan
,
S.-H.
Shi
, and
G.-Y.
Fu
, “
Parametric study of the three-beam laser inside coaxial wire feeding additive manufacturing
,”
Int. J. Adv. Manuf. Technol.
123
,
313
330
(
2022
).
9.
W.
Huang
,
J.
Xiao
,
S.
Chen
, and
X.
Jiang
, “
Control of wire melting behavior during laser hot wire deposition of aluminum alloy
,”
Opt. Laser Technol.
150
,
107978
(
2022
).
10.
A.
Kisielewicz
,
Y.
Mi
,
F.
Sikström
, and
A.
Ancona
, “
Multi sensor monitoring of the wire-melt pool interaction in hot-wire directed energy deposition using laser beam
,”
IOP Conf. Ser. Mater. Sci. Eng.
1296
,
012011
(
2023
).
11.
DIN Deutsches Institut für Normung
, DIN EN ISO 5817: Schweißen—Schmelzschweißverbindungen an Stahl, Nickel, Titan und deren Legierungen (ohne Strahlschweißen)—Bewertungsgruppen von Unregelmäßigkeiten (2023).
12.
M.
Lammers
,
J.
Hermsdorf
,
S.
Kaierle
, and
H.
Ahlers
, “
Entwicklung von laser-Systemkomponenten für das koaxiale laser-Draht-Auftragschweißen von Metall- und Glaswerkstoffen
,” in
Konstruktion für die Additive Fertigung 2019
, edited by
R.
Lachmayer
,
K.
Rettschlag
, and
S.
Kaierle
(
Springer
,
Berlin
,
2020
), pp.
245
260
.
13.
Alfa-Rotec
, MAG Schweißdraht SG3 (G4Si1)-W. Nr.: 1.5130, see https://www.alfa-rotec.de/schweisstechnik/schweissdraht/schweissdraehte-fuer-niedriglegierte-staehle/sg3-g4si1/. Retrieved June 11, 2024.
You do not currently have access to this content.