The fatigue properties of 12 mm Q890D high strength steel welded joint by hybrid laser-arc welding and their influencing factors were investigated in detail. The results showed that the fatigue limit of the welded joint was 406 MPa at two hundred thousand cycles load conditions, which was 45% of the yield strength of the base metal (BM). The welded joint could be divided into three layers, i.e., the backing layer, the filling layer, and the covering layer from the bottom to the top of the welded joint. The fatigue crack was initiated at the weld metal (WM) of the covering layer, then extended down to the WM and the heat affected zone of the filling layer, and finally fractured at the BM along the 45° direction. This was because that the BM consisted of massive polygonal ferrites and small granular carbides, while the WM was composed of martensite with a high density of dislocations. Additionally, the average hardness of the WM was 415 HV, which was 20% higher than that of the BM. Compared with the soft BM, the hardness and the strength of the WM were relatively high, resulting in higher resistance of the WM to the fatigue crack propagation.

1.
H. J.
Kong
,
C.
Xu
,
C. C.
Bu
,
C.
Da
,
J. H.
Luan
,
Z. B.
Jiao
,
G.
Chen
, and
C. T.
Liu
, “
Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions
,”
Acta Mater.
172
,
150
160
(
2019
).
2.
Z. B.
Jiao
,
J. H.
Luan
,
W.
Guo
,
J. D.
Poplawsky
, and
C. T.
Liu
, “
Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles
,”
Acta Mater.
120
,
216
(
2016
).
3.
S. K.
Sharma
and
S.
Maheshwari
, “
A review on welding of high strength oil and gas pipeline steels
,”
J. Nat. Gas Sci.Eng.
38
,
203
217
(
2016
).
4.
J. Z.
Li
,
Q. J.
Sun
,
K. X.
Kang
,
Z. Y.
Zhen
,
Y. B.
Liu
, and
J. C.
Feng
, “
Process stability and parameters optimization of narrow-gap laser vertical welding with hot wire for thick stainless steel in nuclear power plant
,”
Opt. Laser Technol.
123
,
105921
(
2020
).
5.
J.
Balakrishnan
,
N. A.
Vasileiou
,
A. J.
Francis
,
C. M.
Smith
,
J. M.
Roy
,
M. D.
Callaghan
, and
N. M.
Irvine
, “
Residual stress distributions in arc, laser and electron-beam welds in 30 mm thick SA508 steel: A cross-process comparison
,”
Int. J. Pressure Vessels Piping
162
,
59
70
(
2018
).
6.
G.
Chen
,
N.
Sakai
,
M.
Hirohata
,
K.
Hyoma
,
N.
Matsumoto
, and
K.
Inose
, “
Bending fatigue characteristics of butt joints by laser-arc hybrid welding for steel bridge members
,”
Veh. Automot. Eng.
4
,
904
916
(
2023
).
7.
G.
Chen
,
M.
Hirohata
,
N.
Sakai
,
K.
Hyoma
,
N.
Matsumoto
, and
K.
Inose
, “
Charpy absorbed energy in simulated heat-affected zone of laser-arc hybrid welded joints by high-strength steel for bridge structures
,”
Int. J. Adv. Manuf. Technol.
127
,
2655
2669
(
2023
).
8.
L.
Lan
,
C.
Qiu
,
D.
Zhao
,
X.
Gao
, and
L.
Du
, “
Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel
,”
Mater. Sci. Eng., A
558
,
592
601
(
2012
).
9.
I.
Bunaziv
,
G.
Langelandsvik
,
X.
Ren
,
I.
Westermann
,
G.
Rorvik
,
C.
Dorum
,
M.H.o.
Danielsen
, and
M.
Eriksson
, “
Effect of preheating and preplaced filler wire on microstructure and toughness in laser-arc hybrid welding of thick steel
,”
J. Manuf. Process.
82
,
829
847
(
2022
).
10.
R.
Su
,
J.
Chen
,
H.
Chen
,
Z.
Zhang
,
X.
Zhao
,
Z.
Lei
,
D.
Wang
,
Y.
Meng
, and
Z.
Zhang
, “
Low-temperature impact toughness of laser-arc hybrid welded low-carbon bainitic steel
,”
J. Mater. Sci.
58
,
12775
12792
(
2023
).
11.
L.
Subashini
,
K. V. P.
Prabhakar
, and
S.
Ghosh
, “
Joint design influence on hybrid laser arc welding of maraging steel
,”
Weld. World
68
,
1611
1624
(
2024
).
12.
X.
You
,
K.
Ning
,
D.
Bai
,
Y.
Liu
,
H.
Zhang
, and
F.
Liu
, “
Corrosion behavior of high-nitrogen steel hybrid welded joints fabricated by hybrid laser-arc welding
,”
Materials
16
,
3617
(
2023
).
13.
L.
Zhang
,
G.
Peng
,
J.
Chi
,
J.
Bi
,
X.
Yuan
,
W.
Li
, and
L.
Zhang
, “
Effect of process parameters on the formability, microstructure, and mechanical properties of laser-arc hybrid welding of Q355B steel
,”
Materials
16
,
4253
(
2023
).
14.
M.
Sokolov
,
A.
Salminen
,
M.
Kuznetsov
, and
I.
Tsibulskiy
, “
Laser welding and weld hardness analysis of thick section S355 structural steel
,”
Mater. Des.
32
,
5127
5131
(
2011
).
15.
Z.
Wang
,
M.
Gong
,
L.
Zhou
, and
M.
Gao
, “
A review of numerical simulation of laser-arc hybrid welding
,”
Materials
16
,
3561
(
2023
).
16.
H. Z.
Wang
,
M.
Nakanishi
, and
Y.
Kawahito
, “
Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser
,”
J. Mater. Process. Technol.
249
,
193
201
(
2017
).
17.
M.
Zhang
,
G.
Chen
,
Y.
Zhou
, and
S.
Liao
, “
Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser
,”
Mater. Des.
5
,
568
576
(
2014
).
18.
Y.
Kawahito
,
M.
Mizutani
, and
S.
Katayama
, “
High quality welding of stainless steel with 10 kW high power fibre laser
,”
Sci. Technol. Weld. J.
14
,
288
294
(
2009
).
19.
K.
Hao
,
Z.
Gao
,
J.
Huang
,
L.
Xu
,
Y.
Liu
,
Y.
Han
,
L.
Zhao
, and
W.
Ren
, “
Comparisons of laser and laser-arc hybrid welded carbon steel with beam oscillation
,”
Opt. Laser Technol.
157
,
108787
(
2023
).
20.
Q.
Liu
,
D.
Wu
,
Q.
Wang
,
P.
Zhang
,
H.
Yan
,
T.
Sun
, and
R.
Li
, “
Progress and perspectives of joints defects of laser-arc hybrid welding: A review
,”
Int. J. Adv. Manuf. Technol.
130
,
915
931
(
2024
).
21.
Y.
Qiu
,
J.
Ping
,
L.
Shu
,
M.
Song
,
D.
Ma
,
X.
Yan
, and
S.
Li
, “
Defect monitoring of high-power laser-arc hybrid welding process based on an improved channel attention convolutional neural network
,”
J. Intell. Manuf.
(published online) (
2024
).
22.
Q.
Liu
,
D.
Wu
,
Q.
Wang
,
P.
Zhang
,
H.
Yan
,
T.
Sun
,
J.
Zeng
,
M.
Yan
,
Z.
Liu
, and
R.
Li
, “
Research status of stability in dynamic process of laser-arc hybrid welding based on droplet transfer behavior: A review
,”
Coatings
13
,
205
(
2023
).
23.
B.
Cui
,
K.
Chen
,
Y.
Yang
,
Y.
Lv
,
F.
Zhang
, and
S.
Liu
, “
Effect of ultrasonic vibration on the pores and properties of the laser-arc hybrid welding joint of high nitrogen steel
,”
Mater. Chem. Phys.
318
,
129297
(
2024
).
24.
Y.
Dong
,
G.
Xu
,
N.
Li
,
H.
Zhang
, and
L.
Liu
, “
Microstructure and mechanical properties of TC4/QP980 laser-arc hybrid welded lap joint with CuSi3 filler wire: Experiment and first-principles calculation
,”
Mater. Charact.
214
,
114089
(
2024
).
25.
Y.
Li
,
P.
Jiang
,
Y.
Li
,
G.
Mi
, and
S.
Geng
, “
Microstructure evolution and mechanical properties in the depth direction of ultra-high power laser-arc hybrid weld joint of 316L stainless steel
,”
Opt. Laser Technol.
160
,
109093
(
2023
).
26.
J.
Cao
,
Y.
Wang
,
X.
Liu
,
G.
Xu
,
X.
Zeng
, and
K.
Wei
, “
Single-pass high-power laser-arc hybrid welding of thick stainless steel clad plates: Microstructure and mechanical properties
,”
J. Mater. Res. Technol.
30
,
5733
5745
(
2024
).
27.
J.
Chen
,
Z.
Zhang
,
Z.
Zhang
,
Y.
Liu
,
X.
Zhao
,
J.
Chen
, and
H.
Chen
, “
Effect of the cooling rate of thermal simulation on the microstructure and mechanical properties of low-carbon bainite steel by laser-arc hybrid welding
,”
Coatings
12
,
1045
(
2022
).
28.
S.
Yang
,
D.
Wang
,
L.
Yang
,
F.
Zhang
,
C.
Zhang
,
B.
Zhou
,
C.
Liu
, and
G.
Huang
, “
Effects of laser-arc hybrid welding on microstructure and mechanical properties of dissimilar steel joint
,”
Optik
268
,
169795
(
2022
).
29.
Y.
Han
,
B.
Kong
,
J.
Wang
,
K.
Fu
,
H.
Jin
,
J.
Chen
, and
Y.
Wei
, “
Effect of laser-arc heat input ratio on the formation, microstructure, and properties of EH36 steel with laser-metal inert gas hybrid welding
,”
J. Mater. Eng. Perform.
32
,
1954
1965
(
2023
).
30.
J. M.
Sanchez-Amaya
,
A.
Gomez-Parra
,
C.
Churiaque
,
S. R.
Fernandez-Vidal
, and
A. J.
Gamez
, “
Fatigue behavior of 8 mm thick steel butt joints performed with hybrid laser arc welding
,”
J. Laser Appl.
35
,
042066
(
2023
).
31.
Q.
Wang
,
Z.
Yan
,
X.
Liu
,
Z.
Dong
, and
H.
Fang
, “
Understanding of fatigue crack growth behavior in welded joint of a new generation Ni-Cr-Mo-V high strength steel
,”
Eng. Fract. Mech.
194
,
224
239
(
2018
).
32.
J. C.
Feng
,
L. Q.
Li
,
Y. B.
Chen
,
Y. Z.
Tian
,
Y. L.
Sun
,
X. J.
Zhang
, and
J.
Zhang
, “
Inhomogeneous microstructure and fatigue crack propagation of thick-section high strength steel joint welded using double-sided hybrid fiber laser-arc welding
,”
Opt. Laser Technol.
134
,
106668
(
2021
).
33.
F.
Men
and
M.
Zhang
, “
Fatigue properties and fatigue strength prediction of 439 ferritic stainless steel
,”
Eng. Fail. Anal.
145
,
107054
(
2023
).
34.
H. K.
Lee
,
K. S.
Kim
, and
C. M.
Kim
, “
Fracture resistance of a steel weld joint under fatigue loading
,”
Eng. Fract. Mech.
66
,
403
419
(
2000
).
35.
A.
Trudel
,
M.
Lévesque
, and
M.
Brochu
, “
Microstructural effects on the fatigue crack growth resistance of a stainless steel CA6NM weld
,”
Eng. Fract. Mech.
115
,
60
72
(
2014
).
36.
M.
Velu
, “
A short review on fracture and fatigue crack growth in welded joints
,”
Mater. Today Proc.
5
,
11364
11370
(
2018
).
37.
N.
Yamaguchi
,
G.
Lemoine
,
T.
Shiozaki
, and
Y.
Tamai
, “
Effect of microstructures on notch fatigue properties in ultra-high strength steel sheet welded joint
,”
Int. J. Fatigue
129
,
105233
(
2019
).
38.
T.
Vuherer
,
P.
Maruschak
, and
I.
Samardžić
, “
Behaviour of coarse grain heat affected zone (HAZ) during cycle loading
,”
Metalurgija
51
,
301
304
(
2012
).
39.
A.
Casagrande
,
G. P.
Cammarota
, and
L.
Micele
, “
Relationship between fatigue limit and Vickers hardness in steels
,”
Mater. Sci. Eng., A
528
,
3468
3473
(
2011
).
40.
X.
Wang
,
Z.
Luo
,
Y.
Liu
, and
L.
Fu
, “
Fatigue properties of advanced high strength steel plate welded by hybrid plasma arc welding
,”
Procedia Struct. Integr.
22
,
59
63
(
2019
).
41.
P. J. E.
Forsyth
and
D. A.
Ryder
, “
Fatigue fracture: Some results derived from the microscopic examination of crack surfaces
,”
Aircr. Eng. Aerosp. Technol.
32
,
96
99
(
1960
).
42.
X.
Li
,
S.
Hu
,
J.
Xiao
, and
L.
Ji
, “
Effects of the heterogeneity in the electron beam welded joint on fatigue crack growth in Ti–6Al–4V alloy
,”
Mater. Sci. Eng., A
529
,
170
176
(
2011
).
43.
S.
Ueki
,
T.
Matsumura
,
Y.
Mine
,
K.
Morito
, and
K.
Takashima
, “
Microstructural fatigue crack growth in single-packet structures of ultra-low carbon steel lath martensite
,”
Scr. Mater.
173
,
80
85
(
2019
).
You do not currently have access to this content.