In laser welding, precision and reproducibility are fundamentally dependent on temporal and spatial processes of energy input. Induced by the dynamics of the melt pool, pressure equilibria in the vapor capillary, and solidification behavior, different weld seam qualities are achieved. To obtain the lowest possible defect frequency, new tailored joining strategies need to be investigated using multibeam and multiwavelength approaches. To improve the quality by influencing the process dynamics, a dual-beam approach is investigated that superimposes a stationary laser beam with a wavelength of 445 nm with a spatially modulated laser beam with a wavelength of 1070 nm. The aim is to utilize ∼10 times higher absorption of a 445 nm diode laser on copper with the high focusability of a 1070 nm fiber laser. In this context, the influence of the relative positions of the two beams to each other on the weld seam quality is investigated, while one of the beams moves either in front, behind, or coaxial to the other beam following the path of a line weld. The main objective is to observe how the laser beams influence each other and how the capillary depth and porosity vary for different parameters. To visualize the process dynamics, the welding experiments on copper are performed at the Deutsches Elektronen-Synchrotron DESY by means of in situ phase contrast videography. Quality-determining weld properties like the distribution of pores or process fluctuations are then extracted automatically from the image sequences by means of a trained neuronal network.

1.
B. W.
Schipper
,
H.-C.
Lin
,
M. A.
Meloni
,
K.
Wansleeben
,
R.
Heijungs
, and
E.
van der Voet
, “
Estimating global copper demand until 2100 with regression and stock dynamics
,”
Resour., Conserv. Recycl.
132
,
28
36
(
2018
).
2.
S. T.
Auwal
,
S.
Ramesh
,
F.
Yusof
, and
S. M.
Manladan
, “
A review on laser beam welding of copper alloys
,”
Int. J. Adv. Manuf. Technol.
96
,
475
490
(
2018
).
3.
F.
Kaufmann
,
C.
Forster
,
M.
Hummel
,
A.
Olowinsky
,
F.
Beckmann
,
J.
Moosmann
,
S.
Roth
, and
M.
Schmidt
, “
Characterization of vapor capillary geometry in laser beam welding of copper with 515 nm and 1030 nm laser beam sources by means of In Situ synchrotron X-ray imaging
,”
Metals
13
,
135
(
2023
).
4.
M.
Hummel
,
C.
Schöler
,
A.
Gillner
,
A.
Häusler
, and
R.
Poprawe
, “
New approaches on laser micro welding of copper by using a laser beam source with a wavelength of 450 nm
,”
J. Adv. Join. Process.
1
,
100012
(
2020
).
5.
M.
Nakazumi
,
A.
Oguri
,
Y.
Ishige
,
R.
Konishi
,
T.
Hirao
,
T.
Takeshi
,
N.
Matsumoto
,
N.
Hayamizu
,
H.
Mori
,
M.
Kaneko
, and
N.
Tsukiji
, “
Hybrid laser system with blue laser and near-infrared fiber laser for copper welding
,”
Proc. SPIE
11983
,
119830J
(
2022
).
6.
S.
Fujio
,
Y.
Sato
,
K.
Takenaka
,
R.
Ito
,
M.
Harada
,
T.
Nishikawa
,
T.
Suga
, and
M.
Tsukamoto
, “
Welding of pure copper wires using a hybrid laser system with a blue diode laser and a single-mode fiber laser
,”
J. Laser Appl.
33
(
2021
).
7.
M.
Rütering
, “
Hybrid solutions moves boundaries of copper welding
,”
Photonics Views
16
,
46
50
(
2019
).
8.
S.
Katayama
,
Introduction: Fundamentals of Laser Welding
(
Woodhead Publishing
, Sawston, Cambridge, UK,
2013
), pp.
3
16
.
9.
DIN Deutsches Institut für Normung e.V.
, DIN EN 1011-6: Schweißen – Empfehlungen zum Schweißen metallischer Werkstoffe – Teil 6: Laser-strahlschweißen,
2019
.
10.
J.
Helm
, “Prozessstabilität und Prozesseffizienz beim Laserstrahlfügen von Hoch reflektiven Kupferwerkstoffen,” Ph.D. thesis, RWTH Aachen University, Germany,
2022
.
11.
H.
Hügel
and
T.
Graf
, Materialbearbeitung mit Laser: Grundlagen und Verfahren, 5. Auflage (Springer Vieweg, Wiesbade, Germany,
2023
).
12.
L.
Alter
, “Porenbildung beim Schweißen von Kupferwerkstoffen unter Verwendung von Laserstrahlung im grünen Wellenlängenbereich,” Ph.D. thesis, Technische Universität Ilmenau, Germany,
2023
.
13.
J.
Dowden
, “
Laser keyhole welding: The vapour phase
,” in
The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology
(
Springer
,
New York
,
2017
), pp.
113
151
.
14.
R.
Fabbro
, “
Developments in Nd:YAG Laser Welding
,” in
Handbook of Laser Welding Technologies
(
Woodhead Publishing
, Sawston, Cambridge, UK,
2013
).
15.
A.
Heider
, “Erweitern der Prozessgrenzen beim Laserstrahlschweißen von Kupfer mit Einschweißtiefen zwischen 1 mm und 10 mm,” Ph.D. thesis, Universität Stuttgart, Germany,
2018
.
16.
A.
Heß
, “Vorteile und Herausforderungen beim Laserstrahlschweißen mit Strahlquellen höchster Fokussierbarkeit,” Ph.D. thesis, Universität Stuttgart, Germany,
2012
.
17.
E.
Kannatey-Asibu
,
Principles of Laser Materials Processing: Developments and Applications
(
Wiley
, Hoboken, NJ,
2023
).
18.
A.
Häusler
, “Präzisionserhöhung beim Laserstrahl-Mikroschweißen durch angepasstes Energiemanagement,” Ph.D. thesis, RWTH Aachen University, Germany,
2020
.
19.
W.
Gref
, “Laserstrahlschweißen von Aluminiumwerkstoffen mit der Fokusmatrixtechnik,” Ph.D. thesis, Universität Stuttgart, Germany,
2005
.
20.
M.
Möller
and
S.
Vogt
, “
Novel multi focus optic approach for gas-tight welding of aluminum alloys in e-mobility
,”
Procedia CIRP
111
,
774
777
(
2022
).
21.
F.
Nagel
,
L.
Brömme
, and
J. P.
Bergmann
, “
Reduction of spatter formation by superposition of two laser intensities
,” in
International Congress on Applications of Laser & Electro-Optics,
Munich, Germany, 26–29 June 2017 (German Scientific Laser Society,
2017
), p.
1502
.
22.
A.
Heider
,
A.
Hess
,
R.
Weber
, and
T.
Graf
, “
Stabilized copper welding by using power modulated green and IR laser beams
,” in
International Congress on Applications of Lasers & Electro-Optics,
Orlando, FL, 23–27 October 2011 (ICALEO,
2011
), pp.
395
402
.
23.
G.
Reinhart
,
J.
Härtl
, and
C.
Lehner
, “
Laser beam welding with a hybrid laser system
,” in
International Congress on Applications of Lasers & Electro-Optics,
Dearborn, MI, 2–5 October 2000 (ICALEO,
2000
), pp.
81
90
.
24.
C.-L.
Chang
, “Berechnung der Schmelzbadgeometrie beim Laserstrahlschweißen mit Mehrfokustechnik,” Ph.D. thesis, Universität Stuttgart, Germany,
2000
.
25.
S.
Gong
,
S.
Pang
,
H.
Wang
, and
L.
Zhang
,
Keyhole and Weld Pool Dynamics in Dual-Beam Laser Welding
(
Springer
, New York,
2021
), pp.
183
201
.
26.
S.
Fujio
,
Y.
Sato
,
E.
Hori
,
R.
Ito
,
S.-I.
Masuno
,
N.
Abe
, and
M.
Tsukamoto
, “
Effect of preheating on pure copper welding by hybrid laser system with blue laser and IR laser
,”
Proc. SPIE
47
116731D (
2021
).
27.
S.
Fujio
,
Y.
Sato
,
K.
Takenaka
,
R.
Ito
,
M.
Ito
,
M.
Harada
,
T.
Nishikawa
,
T.
Suga
, and
M.
Tsukamoto
, “
Welding of pure copper wires using a hybrid laser system with a blue diode laser and a single-mode fiber laser
,”
J. Laser Appl.
33
042056
(
2021
).
28.
S.
Fujio
,
K.
Takenaka
,
Y.
Sato
,
R.
Ito
,
E.
Hori
, and
M.
Tsukamoto
, “
Effect of blue diode laser intensity on welding of pure copper wire using blue-IR hybrid laser
,”
J. Laser Appl.
34
,
1
6
(
2022
).
29.
Y.
Ishige
,
H.
Hashimoto
,
N.
Hayamizu
,
N.
Matsumoto
,
F.
Nishino
,
M.
Kaneko
,
H.
Nasu
,
G. R.
Gajdátsy
,
A.
Cserteg
,
K.
Jahn
,
T.
Hirao
,
H.
Matsuo
, and
R.
Konishi
, “
Blue laser-assisted kW-class CW NIR fiber laser system for high-quality copper welding
,”
Proc. SPIE
11668
,
81
90
(
2021
).
30.
H.
Yang
,
X.
Tang
,
C.
Hu
,
S.
Liu
,
Y.
Fan
,
Y.
Xiao
,
G.
Lu
,
Q.
Wang
,
G.
Chen
,
P.
Xing
,
H.
Tan
,
Z.
Guo
, and
Z.
Niu
, “
Study on laser welding of copper material by hybrid light source of blue diode laser and fiber laser
,”
J. Laser Appl.
33,
032018 (
2021
); available at https://pubs.aip.org/lia/jla/article/33/3/032018/222593/Study-on-laser-welding-of-copper-material-by.
31.
DIN Deutsches Institut für Normung e.V.,
DIN EN ISO 13919-2: Elektronen- und Laserstrahl-Schweißverbindungen - Anforderungen und Emp-fehlungen für Bewertungsgruppen für Unregel-mäßigkeiten - Teil 2: Aluminium, Magnesium und ihre Legierungen und reines Kupfer,
2021
.
You do not currently have access to this content.