Optical windows play a crucial role in laser ablation systems by protecting delicate components inside the chamber while allowing the transmission of laser energy. However, material buildup during the laser ablation process can lead to a significant loss of optical transmission over time. In this work, material deposition on the optical window by laser ablation of olivine using two laser systems operating at 30 kHz, 1 mJ pulse energy, and 20 Hz, 9.6 mJ pulse energy was performed and its impact on the window’s transmission properties, laser-induced breakdown spectroscopy (LIBS) signal, and window recovery is presented. Ablation at 30 kHz with 1 mJ pulses for 10 min resulted in substantial particle deposition on the window, causing a significant drop in transmission. Transmission of clean window dropped abruptly from 90% to nearly 0% (in the UV region from 200 to 300 nm) and 35% (at 600 nm) affecting the LIBS signal. In contrast, ablation at 20 Hz with 9.6 mJ pulses for 5 min showed no material deposition or transmission loss. Additionally, the study demonstrated that the same laser system used for ablation could be employed to remove the deposited material from the window, facilitating its recovery. Laser cleaning of the window at 30 kHz and 12 W average power restored the transmission values from 39% to 62% at 400 nm in the UV region, with potential for further improvement through parameter optimization. In addition, the identification of the hydroxyl group in olivine, which is relevant to NASA’s terahertz heterodyne spectrometer for in situ resource utilization project for the validation of water molecules is presented.

1.
R. E.
Russo
,
X.
Mao
,
J. J.
Gonzalez
,
V.
Zorba
, and
J.
Yoo
, “
Laser ablation in analytical chemistry
,”
Anal. Chem.
85
,
6162
6177
(
2013
).
2.
M. D.
Norman
,
M. T.
McCulloch
,
H. S. C.
O’Neill
, and
G. M.
Yaxley
, “
Magnesium isotopic analysis of olivine by laser-ablation multi-collector ICP-MS: Composition dependent matrix effects and a comparison of the Earth and Moon
,”
J. Anal. At. Spectrom.
21
,
50
54
(
2006
).
3.
M. D.
Norman
,
G. M.
Yaxley
,
V. C.
Bennett
, and
A. D.
Brandon
, “
Magnesium isotopic composition of olivine from the Earth, Mars, Moon, and pallasite parent body
,”
Geophys. Res. Lett.
33
,
L15202
, https:doi.org/10.1029/2006GL026446 (
2006
).
4.
C. V.
Stead
,
E. L.
Tomlinson
,
B. S.
Kamber
,
M. G.
Babechuk
, and
C. A.
McKenna
, “
Rare earth element determination in olivine by laser ablation-quadrupole-ICP-MS: An analytical strategy and applications
,”
Geostand. Geoanal. Res.
41
,
197
212
(
2017
).
5.
S.
Sasaki
,
K.
Nakamura
,
Y.
Hamabe
,
E.
Kurahashi
, and
T.
Hiroi
, “
Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering
,”
Nature
410
,
555
557
(
2001
).
6.
A.
Fazio
,
G.
Matthäus
,
D.
Harries
,
H.
Mutschke
,
S.
Nolte
, and
F.
Langenhorst
, “
Reproducing space weathering of olivine by using high-energy femtosecond laser pulses
,”
Proc. SPIE
10094
,
100941D
(
2017
).
7.
K.
Chrbolková
,
R.
Brunetto
,
J.
Ďurech
et al, “
Comparison of space weathering spectral changes induced by solar wind and micrometeoroid impacts using ion- and femtosecond-laser-irradiated olivine and pyroxene
,”
A&A
654
,
A143
(
2021
).
8.
P. J.
Isaacson
,
C. M.
Pieters
,
S.
Besse
et al, “
Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra
,”
J. Geophys. Res. Planets
116
, 1–17, https://doi.org/10.1029/2010JE003731 (
2011
).
9.
S.
Yamamoto
,
R.
Nakamura
,
T.
Matsunaga
et al, “
Possible mantle origin of olivine around lunar impact basins detected by SELENE
,”
Nat. Geosci.
3
,
533
536
(
2010
).
10.
J. F.
Mustard
,
F.
Poulet
,
A.
Gendrin
et al, “
Olivine and pyroxene diversity in the crust of Mars
,”
Science
307
,
1594
1597
(
2005
).
11.
V. E.
Hamilton
and
P. R.
Christensen
, “
Evidence for extensive, olivine-rich bedrock on Mars
,”
Geology
33
,
433
436
(
2005
).
12.
M. E.
Zolensky
,
T. J.
Zega
,
H.
Yano
et al, “
Mineralogy and petrology of comet 81P/wild 2 nucleus samples
,”
Science
314
,
1735
1739
(
2006
).
13.
H.
Campins
and
E. V.
Ryan
, “
The identification of crystalline olivine in cometary silicates
,”
Astrophys. J.
341
,
1059
(
1989
).
14.
J. M.
Sunshine
,
S. J.
Bus
,
C. M.
Corrigan
,
T. J.
McCoy
, and
T. H.
Burbine
, “
Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories
,”
Meteorit. Planet. Sci.
42
,
155
170
(
2007
).
15.
N.
Anthony
,
J.
Frostevarg
,
H.
Suhonen
,
C.
Wanhainen
,
A.
Penttilä
, and
M.
Granvik
, “
Laser processing of minerals common on asteroids
,”
Opt. Laser Technol.
135
,
106724
(
2021
).
16.
See https://www.elementsmagazine.org/Olivine for information on the importance of olivine mineral in studying Earth and other planetary bodies.
17.
J.
Gose
,
P.
Reichart
,
G.
Dollinger
, and
E.
Schmädicke
, “
Water in natural olivine—Determined by proton-proton scattering analysis
,”
Am. Mineral. Mineral. Soc. Am.
93
,
1613
1619
(
2008
).
18.
R. Y.
Li
,
J.
Hao
,
S.
Hu
,
W. F.
Zhang
,
X. P.
Xia
,
Y.
Lin
, and
W.
Yang
, “
High-spatial-resolution measurement of water content in olivine using NanoSIMS 50L
,”
At. Spectrosc.
43
,
77
83
(
2022
).
19.
M. J.
Russell
and
A.
Ponce
, “
Six ‘must-have’ minerals for life’s emergence: Olivine, pyrrhotite, bridgmanite, serpentine, fougerite and mackinawite
,”
Life
10
,
1
24
(
2020
).
20.
M. J.
Russell
,
A. J.
Hall
, and
W.
Martin
, “
Serpentinization as a source of energy at the origin of life
,”
Geobiology
8
,
355
371
(
2010
).
21.
See https://mars.nasa.gov/mars2020/spacecraft/instruments/supercam/for-scientists/ for information about the Supercam instrument used in the MARS 2020 NASA mission.
22.
R.
Bhartia
,
L. W.
Beegle
,
L.
DeFlores
et al, “
Perseverance’s scanning habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) investigation
,”
Space Sci. Rev.
217
,
1
–115 (
2021
).
23.
24.
R.
Schulte
,
N.
Piatak
,
R.
Seal
, and
L.
Woodruff
, “
Oxide and cation compositions of olivine grains from drill core in the Duluth Complex, Minnesota
,”
U.S. Geological Survey Data Release
, 2017.
25.
R.
Buividas
,
G.
Gervinskas
,
A.
Tadich
et al, “
Phase transformation in laser-induced micro-explosion in olivine (Fe,Mg)2SiO4
,”
Adv. Eng. Mater.
16
,
767
773
(
2014
).
26.
S.
Chenery
,
A.
Hunt
, and
M.
Thompson
, “
Laser ablation of minerals and chemical differentiation of the ejecta
,”
J. Anal. At. Spectrom.
7
,
647
652
(
1992
).
27.
R.
Christoffersen
,
M.
Loeffler
,
C.
Dukes
,
L.
Keller
, and
R.
Baragiola
, “Compositional and microstructural evolution of olivine under multiple-cycle pulsed laser irradiation as revealed by FIB/field-emission TEM” paper presented at the 47th Lunar and Planetary Science Conference, The Woodlands, Texas, March 21–25, 2016.
28.
W.
Jiang
,
X. Z.
Xie
,
X.
Wei
,
W.
Hu
,
Q. L.
Ren
, and
Z. S.
Zou
, “
High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation
,”
Opt. Mater. Express
7
,
1565
1574
(
2017
).
29.
A.
Neubeck
,
N. T.
Duc
,
H.
Hellevang
,
C.
Oze
,
D.
Bastviken
,
Z.
Bacsik
, and
N. G.
Holm
, “
Olivine alteration and H2 production in carbonate-rich, low temperature aqueous environments
,”
Planet Space Sci.
96
,
51
61
(
2014
).
30.
R.
Ellerbrock
,
M.
Stein
, and
J.
Schaller
, “
Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR
,”
Sci. Rep. Nat. Res.
12
,
11708
(
2022
).
31.
S. M.
Chemtob
,
T. D.
Glotch
, and
G. R.
Rossman
, “ATR-IR spectroscopy for in situ mineral analysis on planetary surfaces: Steps toward a forward model” paper presented at the 41st Annual Lunar and Planetary Science Conference, The Woodlands, Texas, March 1–5, 2010.
You do not currently have access to this content.