In the single-pass multilayer deposition process of laser wire additive manufacturing, variations in process parameters significantly influence the morphology of the deposited layer. This study experimentally investigates how the main process parameters (laser power, scanning speed, and wire feeding speed) affect the morphology of the deposited layer. It was found that each parameter has distinct effects on the geometrical morphology of deposition. Simultaneously, aiming to enhance the surface topography of the deposited layer and its bonding with the substrate, three optimization objectives are defined. An optimization model is then constructed using experimental data to refine the process parameters. The optimal parameters are determined through experimentation, resulting in significant enhancement of the deposited layer’s topography.

1.
Q.
Tang
,
S.
Pang
,
B.
Chen
,
H.
Suo
, and
J.
Zhou
, “
A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti6Al4V alloy
,”
Int. J. Heat Mass Transfer
78
,
203
215
(
2014
).
2.
H.
Qi
,
J.
Mazumder
, and
H.
Ki
, “
Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition
,”
J. Appl. Phys.
100
,
024903
(
2006
).
3.
D. X.
Wu
,
J.
Zhou
,
P,
Ma
, and
T.
Zhao
, “
Optimization of hot die forging process parameters of 7050 aluminuim alloy rib-web type components based on response surface method
,”
J. Cent. South Univ. (Sci. Technol.)
48
,
601
607
(
2017
).
4.
L.
Ji
,
Research on the Method of Spacecraft Finite Element Model Correction Based on Response Surface Methodology
(
Harbin Institute of Technology
,
Harbin
,
2020
), pp.
8
16
.
5.
Y.
Kong
,
D. C.
Ba
, and
Q. Z.
Song
, “
Analysis of process parameters about metal laser melting deposition process of TiAI6V4 alloys based on logistic regression model
,”
Vacuum
55
,
34
40
(
2018
).
6.
P.
Fan
and
G.
Zhang
, “
Study on process optimization of WC-Co50 cermet composite coating by laser cladding
,”
Int. J. Refract. Met. Hard Mater.
87
,
105133
(
2020
).
7.
Z.
Huang
,
The Process Optimization and Quality Assessment on Laser Hot Wire Cladding for the Impeller Material
(
Beijing Jiaotong University
,
Beijing
,
2020
), Vol. 6, pp.
19
34
.
8.
H.
Javidrad
,
H.
Aydin
,
H.
Aydin
,
B.
Karakaş
,
S.
Alptekin
,
A. S.
Kahraman
, and
B.
Koc
, “
Process parameter optimization for laser powder directed energy deposition of Inconel 738LC
,”
Opt. Laser Technol.
176
,
110940
(
2024
).
9.
S.
Li
,
H.
Wei
,
S.
Yuan
,
J.
Zhu
,
J.
Li
,
W.
Zhang
, “
Collaborative optimization design of process parameter and structural topology for laser additive manufacturing
,”
Chin. J. Aeronaut.
36
,
456
467
(
2023
).
10.
E. O.
Olakanmi
,
S. T.
Nyadongo
,
K.
Malikongwa
,
S. A.
Lawal
,
A.
Botes
, and
S. L.
Pityana
, “
Multi-variable optimization of the quality characteristics of fiber-laser cladded Inconel-625 composite coatings
,”
Surf. Coat. Technol.
357
,
289
303
(
2019
).
11.
G.
Su
,
Y.
Shi
,
G.
Li
,
G.
Zhang
, and
Y.
Xu
, “
Highly-efficient additive manufacturing of Inconel 625 thin wall using hot-wire laser metal deposition: Process optimization, microstructure, and mechanical properties
,”
Opt. Laser Technol.
175
,
110763
(
2024
).
12.
T.
Kachomba
,
J.
Mutua
,
J.
Obiko
, and
J.
Ngoret
, “
Multi-response optimisation of wire-arc additive manufacturing process parameters for AISI 4130 steel during remanufacturing process
,”
Mater. Res. Express
11
,
056503
(
2024
).
13.
T.
Chen
,
W. N.
Wu
,
W. P.
Li
, and
D.
Liu
, “
Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model
,”
Opt. Laser Technol.
116
,
345
355
(
2019
).
14.
X.
Tian
,
J.
Guo
, and
Z.
Yihao
, “
Research on selective laser melting parameter optimization based on improved support vector machine
,”
Therm. Process.
50
,
29
31
(
2021
).
15.
B.
Wu
,
Z.
Pan
,
D.
Ding
,
D.
Cuiuri
, and
H.
Li
, “
Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing
,”
Addit. Manuf.
23
,
151
160
(
2021
).
16.
T. M.
Chiu
,
M.
Mahmoudi
,
W.
Dai
,
A.
Elwany
,
H.
Liang
, and
H.
Castaneda
, “
Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing
,”
Electrochim. Acta
279
,
143
151
(
2018
).
17.
G.
Rotella
,
S.
Imbrogno
,
S.
Candamano
, and
D.
Umbrello
, “
Surface integrity of machined additively manufactured Ti alloys
,”
J. Mater. Process. Technol.
259
,
180
185
(
2018
).
18.
S.
Yi
,
W.
Xianlin
,
Z.
Hua
et al, “
Multi-objective optimization strategy for laser cladding process parameters in remanufacturing
,”
Appl. Laser
42
,
23
29
(
2022
).
19.
M.
Fanlong
,
Static and Dynamic Characteristics Analysis of the Gearbox Shell of Alight Truck and Multi-Objective Topology Optimization
(
North University of China
, Taiyuan, China,
2017
), Vol. 8.
20.
X.
Xiangchuang
,
Multi-Objective Optimization of Laser Cladding Process Parameters for Remanufacturing
(
North University of China
, Taiyuan, China,
2019
), Vol. 9.
You do not currently have access to this content.