In this study, we successfully produced Fe-based amorphous composite coatings on the surface of 45 steel using laser cladding technology, and the impact of the relative content of Cr and Mo elements on the microstructure, hardness, and wear resistance of composite coatings has been investigated. The results show that the microstructure of the coating changes from dendrite to amorphous nanocrystalline when the content of Cr and Mo is 20 and 15 wt. %, respectively. However, when the Mo element continues to be added, elemental segregation will be caused, resulting in a large number of brittle Fe–Cr–Mo intermetallic compounds and MoSi2 ceramic phases in the coating. Therefore, the appropriate element ratio can not only increase the amorphous phase content in the coating but also prevent elemental segregation. Among the three types of amorphous composite coatings studied, the Fe45Cr20Mo15B10Si10 (wt. %) composite coating exhibited the most favorable performance, primarily due to its highest amorphous content (43.33%). Through the interaction of the amorphous phase, α-Fe, Fe–Cr solid solution, and a small proportion of intermetallic compounds, this coating achieved a hardness of 1282.8 HV0.2, approximately five times that of the 45 steel substrate, and demonstrated superior wear resistance.

1.
S. S.
Joshi
,
S.
Katakam
,
H. S.
Arora
,
S.
Mukherjee
, and
N. B.
Dahotre
, “
Amorphous coatings and surfaces on structural materials
,”
Crit. Rev. Solid State Mater. Sci.
41
,
1
46
(
2016
).
2.
C.
Codrean
,
C.
Cosma
,
D.
Tosa
,
D.
Buzdugan
, and
A. I.
Dume
, “
Composite materials fabricated of amorphous and nanocrystalline metallic powders
,”
Mater. Plast.
56
,
744
749
(
2019
).
3.
H. X.
Li
,
Z. C.
Lu
,
S. L.
Wang
,
Y.
Wu
, and
Z.P.
Lu
, “
Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications
,”
Prog. Mater. Sci.
103
,
235
318
(
2019
).
4.
C.
Zhang
,
H.
Zhou
, and
L.
Liu
, “
Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance
,”
Acta Mater.
72
,
239
251
(
2014
).
5.
J.
Wu
,
S. D.
Zhang
,
W. H.
Sun
,
Y.
Gao
, and
J. Q.
Wang
, “
Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones
,”
Corros. Sci.
136
,
161
173
(
2018
).
6.
W. M.
Guo
,
J. F.
Zhang
,
Y. P.
Wu
,
S.
Hong
, and
Y.
Qin
, “
Fabrication and characterization of Fe-based amorphous coatings prepared by high-velocity arc spraying
,”
Mater. Des.
78
,
118
124
(
2015
).
7.
Z. H.
Chu
,
X. W.
Zheng
,
C. Y.
Zhang
,
J.
Xu
, and
L.
Gao
, “
Study the effect of AT13 addition on the properties of AT13/Fe-based amorphous composite coatings
,”
Surf. Coat. Technol.
379
,
125053
(
2019
).
8.
Q.
Wang
,
P.
Han
,
S.
Yin
,
W.-J.
Niu
,
L.
Zhai
,
X.
Li
, and
X.
Mao
, “
Current research status on cold sprayed amorphous alloy coatings: A review
,”
Coatings
11
,
206
(
2021
).
9.
X. C.
Hou
,
D.
Du
,
B. H.
Chang
, and
N.
Ma
, “
Influence of scanning speed on microstructure and properties of laser cladded Fe-based amorphous coatings
,”
Materials
12
,
1279
(
2019
).
10.
X. Q.
Dai
,
S. F.
Zhou
,
M. F.
Wang
, and
J.
Lei
, “
Microstructure evolution of phase separated Fe–Cu–Cr–C composite coatings by laser induction hybrid cladding
,”
Surf. Coat. Technol.
324
,
518
525
(
2017
).
11.
J.
Kim
,
K.
Kang
,
S.
Yoon
,
S.
Kumar
,
H.
Na
, and
C.
Lee
, “
Oxidation and crystallization mechanisms in plasma-sprayed Cu-based bulk metallic glass coatings
,”
Acta Mater.
58
,
952
962
(
2010
).
12.
H.
Wu
,
L. X.
Liang
,
H.
Zeng
et al, “
Microstructure and nanomechanical properties of Zr-based bulk metallic glass composites fabricated by laser rapid prototyping
,”
Mater. Sci. Eng. A
765
,
138306
(
2019
).
13.
R. F.
Li
,
Y. J.
Jin
,
Z. G.
Li
,
Y.
Zhu
, and
M.
Wu
, “
Effect of the remelting scanning speed on the amorphous forming ability of Ni-based alloy using laser cladding plus a laser remelting process
,”
Surf. Coat. Technol.
259
,
725
731
(
2014
).
14.
C. L.
Zhu
,
Q.
Wang
,
Y. M.
Wang
,
J. B.
Qiang
, and
C.
Dong
, “
Co–B–Si–Ta bulk metallic glasses designed using cluster line and alloying
,”
J. Alloys Compd.
504
,
S34
S37
(
2010
).
15.
P. L.
Zhang
,
Q.
Zhang
,
H.
Yan
et al, “
Fabrication, microstructure and micromechanical properties of Fe-based metallic glass coating manufactured by laser
,”
Surf. Coat. Technol.
405
,
126726
(
2021
).
16.
X. C.
Shang
,
C. Z.
Zhang
,
T.
Xv
,
C.
Wang
, and
K.
Lu
, “
Synergistic effect of carbide and amorphous phase on mechanical property and corrosion resistance of laser-clad Fe-based amorphous coatings
,”
Mater. Chem. Phys.
263
,
124407
(
2021
).
17.
R.
Li
,
Z.
Zhou
,
D. Y.
He
,
Y.
Wang
,
X.
Wu
, and
X.
Song
, “
Microstructure and high temperature corrosion behavior of wire-arc sprayed FeCrSiB coating
,”
J. Therm. Spray Technol.
24
,
857
864
(
2015
).
18.
Q. Q.
Wang
,
X. D.
Bai
,
B.
Sun
,
J.
Liu
,
Z.
Cai
,
X.
Liang
, and
B.
Shen
, “
Influence of Si on tribological behavior of laser cladded Fe-based amorphous/crystalline composite coatings
,”
Surf. Coat. Technol.
405
,
126570
(
2021
).
19.
C. A. C.
Souza
,
D. V.
Ribeiro
, and
C. S.
Kiminami
, “
Corrosion resistance of Fe–Cr-based amorphous alloys: An overview
,”
J. Non-Cryst. Solids
442
,
56
66
(
2016
).
20.
C. F.
Conde
,
V.
Franco
, and
A.
Conde
, “
Influence of mo addition in the crystallization of Fe–Si–B–Cu–Nb alloys
,”
Philos. Mag. B
76
,
489
493
(
1997
).
21.
Z.
Man
,
L. J.
Yao
,
S. S.
Chen
,
J. F.
Xu
,
L.
Zhang
,
Z. Y.
Jian
, and
F. E.
Chang
, “
Influence of partial replacement of Fe by Mo element on thermal stability and soft magnetic properties of the Fe–Nb–B amorphous alloys
,”
Rare Met. Mater. Eng.
45
,
715
719
(
2016
).
22.
X. H.
Wang
,
F.
Han
,
X. M.
Liu
,
S. Y.
Qu
, and
Z. D.
Zou
, “
Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings
,”
Mater. Sci. Eng. A
489
,
193
200
(
2008
).
23.
K. Y.
Li
,
J.
Liang
, and
J. S.
Zhou
, “
Preparation and characterization of laser cladded FeCrMoBSi amorphous composite coatings
,”
Surf. Coat. Technol.
423
,
127520
(
2021
).
24.
Z. H.
Chen
,
R. F.
Li
,
J. Y.
Gu
,
Z.
Zhang
,
Y.
Tao
, and
Y.
Tian
, “
Laser cladding of Ni60 + 17-4PH composite for a cracking-free and corrision resistive coating
,”
Int. J. Mod. Phys. B
34
,
2040042
(
2020
).
25.
L.
Ren
,
Y. H.
Cheng
,
S.
Wang
,
X.
Meng
,
Q.
Qin
, and
J.
Yang
, “
Oxidation behavior of the supercritical water on the ternary Ni–W–P coating
,”
Chem. Eng. J.
370
,
1388
1406
(
2019
).
26.
F. Y.
Shu
,
Z.
Tian
,
H. Y.
Zhao
,
W.
He
,
S.
Sui
, and
B.
Liu
, “
Synthesis of amorphous coating by laser cladding multi-layer Co-based self-fluxed alloy powder
,”
Mater. Lett.
176
,
306
309
(
2016
).
27.
H. Z.
Wang
,
Y. H.
Cheng
,
X. C.
Zhang
,
J.-Y.
Yang
, and
C.-M.
Cao
, “
Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings
,”
Mater. Chem. Phys.
250
,
123091
(
2020
).
28.
C.
Li
,
J.
Zhai
,
L.
Tian
,
Y.
Lu
, and
S.
Kou
, “
Fabrication of Fe-based amorphous composite coating by laser cladding
,”
J. Non-Cryst. Solids
589
,
121648
(
2022
).
29.
H.
Song
,
C.
Guo
,
F.
Jiang
,
M.
Xiao
,
M.
Diao
,
Z.
Chen
, and
H.
Zhang
, “
Adding high entropy alloys to improve microstructure and properties of laser cladding Fe-based amorphous coatings
,”
J. Non-Cryst. Solids
619
,
122559
(
2023
).
30.
H.-Z.
Wang
,
Y.-H.
Cheng
,
J.-Y.
Yang
, and
X.-B.
Liang
, “
Microstructure and properties of Fe based amorphous coatings deposited by laser cladding under different preheating temperatures
,”
J. Non-Cryst. Solids
602
,
122081
(
2023
).
31.
Y.
Lee
,
M.
Nordin
,
S. S.
Babu
, and
D.F.
Farson
, “
Effect of fluid convection on dendrite arm spacing in laser deposition
,”
Metall. Mater. Trans. B
45
,
1520
1529
(
2014
).
32.
A.
Basu
,
A. N.
Sarnant
,
S. P.
Harimkar
,
J. D.
Majumdar
, and
N. B.
Dahotre
, “
Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steel
,”
Surf. Coat. Technol.
202
,
2623
2631
(
2008
).
33.
S. L.
Wang
,
Z. Y.
Zhang
,
Y. B.
Gong
, and
G. M.
Nie
, “
Microstructures and corrosion resistance of Fe-based amorphous/nanocrystalline coating fabricated by laser cladding
,”
J. Alloys Compd.
728
,
1116
1123
(
2017
).
34.
B. L.
Shen
,
M.
Akiba
, and
A.
Inoue
, “
Effects of Si and Mo additions on glass-forming in FeGaPCB bulk glassy alloys with high saturation magnetization
,”
Phys. Rev. B
73
,
104204
(
2006
).
35.
S.
Zheng
,
J. W.
Li
,
J. J.
Zhang
,
K.
Jiang
,
A.
Liu
,
C.
Chang
, and
X.
Wang
, “
Effect of Si addition on the electrochemical corrosion and passivation behavior of Fe–Cr–Mo–C–B–Ni–P metallic glasses
,”
J. Non-Cryst. Solids
493
,
33
40
(
2018
).
36.
S. L.
Cao
,
J.
Liang
,
J. S.
Zhou
, and
L.
Wang
, “
Microstructure evolution and wear resistance of in situ nanoparticles reinforcing Fe-based amorphous composite coatings
,”
Surf. Interfaces
21
,
100652
(
2020
).
37.
M. L.
Shan
,
C. Z.
Zhang
,
N.
Wang
,
W.
Li
, and
X.
Yin
, “
Improvement in wear resistance of laser-clad Fe–Cr–Mo–B–C-(TiC) amorphous-nanocrystalline coating
,”
Vacuum
207
,
111676
(
2023
).
38.
J.
Yu
,
C.
Qiao
,
S.
Zhang
,
Z.
Liu
, and
P.
Wróblewski
, “
Tribological properties of laser-cladded Fe-based amorphous composite coatings under dry and lubricated sliding
,”
Opt. Laser Technol.
166
,
109583
(
2023
).
39.
J.
Gu
,
J.
Ju
,
R.
Wang
,
J.
Li
, and
H.
Yu
, “
Effects of laser scanning rate and Ti content on wear of novel Fe–Cr–B–Al–Ti coating prepared via laser cladding
,”
J. Therm. Spray Technol.
31
,
2609
2620
(
2022
).
40.
J.
Gu
,
D. Q.
Li
,
S. C.
Liu
,
J.
Si
,
S.
Cai
, and
K.
Wang
, “
Investigation on microstructure and dry sliding wear behavior of a novel Fe–Cr–B–C–Al–Si–Mn composite coatings on 2Cr13 steel by laser cladding
,”
J. Mater. Eng. Perform.
31
,
2381
2390
(
2022
).
You do not currently have access to this content.