The ultrashort pulsed (USP) laser microwelding of sapphire/lnvar36 alloy controlled by the surface roughness of metal was investigated for the first time. The surface roughness (Sa) of Invar alloys gradually decreased from 0.944 to 0.029 μm from the prime surface to grounded and polished surface. However, the joint shear strength first increased and then decreased with the lowered Sa, the maximum shear strength reached 107.87 MPa at the Sa 0.131 μm. Compared to other surfaces with low Sa, the relatively high surface roughness enhanced the interfacial thermal deposition both spatially and temporally which in turn promoted the diffusion of interface elements and the formation of jagged mechanical interlocking structures. Therefore, the appropriate rough metal surface was beneficial for the enhancement of sapphire/metal dissimilar joints. This report is of great significance in simplifying the surface preparation process in the USP laser microwelding of transparent hard and brittle materials with metals, therefore promoting this technique from lab to industry.

1.
C.
Iwamoto
, “
Microstructure of aluminum/glass joint bonded by ultrasonic wire welding
,”
Metall. Mater. Trans. A
45
,
1371
1375
(
2014
).
2.
A.
Utsumi
,
T.
Ooie
,
T.
Yano
et al, “
Direct bonding of glass and metal using short pulsed laser
,”
J. Laser Micro/Nanoeng.
2
,
133
136
(
2007
).
3.
G.
Zhang
and
G.
Cheng
, “
Direct welding of glass and metal by 1 kHz femtosecond laser pulses
,”
Appl. Opt.
54
,
8957
61
(
2015
).
4.
I.
Miyamoto
,
K.
Cvecek
,
Y.
Okamoto
, and
M.
Schmidt
, “
Internal modification of glass by ultrashort laser pulse and its application to microwelding
,”
Appl. Phys. A
114
,
187
208
(
2014
).
5.
J.
Xu
,
Q.
Jiang
,
J.
Yang
et al, “
A review on ultrafast laser microwelding of transparent materials and transparent material—Metals
,”
Metals
13
,
876
(
2023
).
6.
J.-C.
Kieffer
,
D.
Hélie
,
F.
Lacroix
et al, “
Bonding of optical materials by femtosecond laser welding for aerospace and high power laser applications
,”
Proc. SPIE
8412
,
841210
(
2012
).
7.
S.
Richter
,
S.
Döring
,
A.
Tünnermann
, and
S.
Nolte
, “
Bonding of glass with femtosecond laser pulses at high repetition rates
,”
Appl. Phys. A
103
,
257
261
(
2011
).
8.
R. E.
Lafon
,
S.
Li
,
F.
Micalizzi
et al, “
Ultrafast laser bonding of glasses and crystals to metals for epoxy-free optical instruments
,”
Proc. SPIE
11261
,
1126103
(
2020
).
9.
Z.
Chen
,
J.
Yang
,
H.
Liu
,
Y.
Zhao
, and
R.
Pan
, “
A short review on functionalized metallic surfaces by ultrafast laser micromachining
,”
Int. J. Adv. Manuf. Technol.
119
,
6919
6948
(
2022
).
10.
S.
Küper
and
M.
Stuke
, “
Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses
,”
Appl. Phys. Lett.
54
,
4
6
(
1989
).
11.
L.
Zhang
,
H.
Wu
,
J.
Wen
et al, “
Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser
,”
J. Mater. Process. Technol.
302
,
117504
(
2022
).
12.
W.
Xu
,
H.
Li
,
J.
Yang
,
Y.
Zhao
,
J. P.
Oliveira
,
H.
Liu
,
Z.
Zhang
, and
C.
Tan
, “
Dynamic wetting and spreading mechanisms regulated by elemental Ni in a Mg/steel immiscible system during laser processing
,”
J. Manuf. Process.
80
,
600
611
(
2022
).
13.
M.
Zheng
,
J.
Yang
,
J.
Xu
et al, “
Interfacial microstructure and strengthening mechanism of dissimilar laser Al/steel joint via a porous high entropy alloy coating
,”
J. Mater. Res. Technol.
23
,
3997
4011
(
2023
).
14.
J.
Jiang
,
J. P.
Oliveira
,
J.
Yang
et al, “
Effect of defocusing distance on interfacial reaction and mechanical properties of dissimilar laser Al/steel joints with a porous high entropy alloy coating
,”
Mater. Charact.
210
,
113751
(
2024
).
15.
Q.
Jiang
,
J.
Yang
,
R.
Xiao
et al, “
Outstanding ductility of dissimilar laser Al/steel spot joint using a high entropy alloy interlayer
,”
Mater. Lett.
349
, 134707 (
2023
).
16.
R. M.
Carter
,
J.
Chen
,
J. D.
Shepard
et al., “
Picosecond laser welding of similar and dissimilar materials
,”
J. Appl. Opt.
53
(19), 4233–4238 (
2014
).
17.
T.
Tamaki
,
W.
Watanabei
, and
K.
Itoh
, “
Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm
,”
Opt. Express
14
,
10460
10468
(
2006
).
18.
S.
Wu
,
D.
Wu
,
J.
Xu
et al, “
Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation
,”
Opt. Express
20
,
28893
28905
(
2012
).
19.
S.
Richter
,
F.
Zimmermann
,
R.
Eberhardt
,
A.
Tünnermann
, and
S.
Nolte
, “
Toward laser welding of glasses without optical contacting
,”
Appl. Phys. A
121
,
1
9
(
2015
).
20.
Y.
Ozeki
,
T.
Inoue
,
T.
Tamaki
et al, “
Direct welding between copper and glass substrates with femtosecond laser pulses
,”
Appl. Phys. Express
1
,
082601
(
2008
).
21.
L.
Zhang
,
H.
Wu
,
J.
Wen
,
M.
Li
,
X.
Shao
, and
X.
Ma
, “
Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser
,”
J. Mater. Process. Technol.
302
,
117504
(
2022
).
22.
R. M.
Carter
,
M.
Troughton
,
J.
Chen
et al, “
Picosecond laser bonding of highly dissimilar materials; proceedings of the emerging imaging and sensing technologies
,”
Proc. SPIE
9992
,
999207
(
2016
).
23.
T.
Tamaki
,
W.
Watanabe
,
J.
Nishii
, and
K.
Itoh
, “
Welding of transparent materials using femtosecond laser pulses
,”
Jpn. J. Appl. Phys.
44
,
L687
(
2005
).
24.
W.
Watanabe
,
S.
Onda
,
T.
Tamaki
et al, “
Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses
,”
Appl. Phys. Lett.
89
,
021106
(
2006
).
25.
M.
Shimizu
,
M.
Sakakura
,
M.
Ohnishi
,
Y.
Shimotsuma
,
T.
Nakaya
,
K.
Miura
, and
K.
Hirao
, “
Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses
,”
J. Appl. Phys.
108
(
2010
).
26.
I.
Miyamoto
,
K.
Cvecek
, and
M.
Schmidt
, “
Crack-free conditions in welding of glass by ultrashort laser pulse
,”
Opt. Express
21
,
14291
14302
(
2013
).
27.
X.
Jia
,
K.
Li
,
Z.
Li
,
C.
Wang
,
J.
Chen
, and
S.
Cui
, “
Multi-scan picosecond laser welding of non-optical contact soda lime glass
,”
Opt. Laser Technol.
161
,
109164
(
2023
).
28.
M.
Ahmed Obeidi
,
E.
Mccarthy
,
S. I.
Ubani
,
I.
Ul Ahad
, and
D.
Brabazon
, “
Effect of surface roughness on CO2 laser absorption by 316L stainless steel and aluminum
,”
Mater. Perform. Charact.
8
,
1167
1177
(
2019
).
29.
H.
Chen
,
J.
Duan
,
Z.
Yang
,
W.
Xiong
, and
L.
Deng
, “
Picosecond laser seal welding of glasses with a large gap
,”
Opt. Express
27
,
30297
30307
(
2019
).
30.
J.
Chen
,
R. M.
Carter
,
R. R.
Thomson
, and
D. P.
Hand
, “
Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding
,”
Opt. Express
23
,
18645
18657
(
2015
).
31.
K.
Cvecek
,
R.
Odato
,
S.
Dehmel
,
I.
Miyamoto
, and
M.
Schmidt
, “
Gap bridging in joining of glass using ultra short laser pulses
,”
Opt. Express
23
,
5681
5693
(
2015
).
32.
S.
Matsuyoshi
,
Y.
Mizuguchi
,
A.
Muratsugu
et al, “
Welding of glass and copper with a rough surface using femtosecond fiber laser pulses
,”
J. Laser Micro Nanoeng.
13
,
21
25
(
2018
).
33.
R. M.
Carter
,
M.
Troughton
,
J.
Chen
,
I.
Elder
,
R. R.
Thomson
,
M. J.
Daniel Esser
,
R. A.
Lamb
, and
D. P.
Hand
, “
Towards industrial ultrafast laser microwelding: SiO(2) and BK7 to aluminum alloy
,”
Appl. Opt.
56
,
4873
4881
(
2017
).
34.
Y.
Wang
,
Y.
Li
,
S.
Ao
et al, “
Welding of 304 stainless steel and glass using high-repetition-frequency femtosecond laser
,”
Mater. Res. Express
8
,
106523
(
2021
).
35.
C.-H.
Ji
,
Y.-J.
Huang
,
X.
Chen
,
J.-Y.
Jiang
,
Z.-J.
Guo
, and
Y.
Long
, “
Direct microwelding of dissimilar glass and Kovar alloy without optical contact using femtosecond laser pulses
,”
J. Cent. South Univ.
29
,
3422
3435
(
2022
).
36.
F. E.
Grubbs
, “
Sample criteria for testing outlying observations
,”
Ann. Math. Stat.
21
,
27
58
(
1950
).
37.
R.
Pan
,
D.
Yang
,
T.
Zhou
,
Y.
Feng
,
Z.
Dong
,
Z.
Yan
,
P.
Li
, and
S.
Chen
, “
Micro-welding of sapphire and metal by femtosecond laser
,”
Ceram. Int.
49
,
21384
21392
(
2023
).
38.
O. P.
Ciuca
,
R. M.
Carter
,
P. B.
Prangnell
, and
D. P.
Hand
, “
Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds
,”
Mater. Charact.
120
,
53
62
(
2016
).
39.
L. K.
Ang
,
Y. Y.
Lau
,
R. M.
Gilgenbach
, and
H. L.
Spindler
, “
Analysis of laser absorption on a rough metal surface
,”
Appl. Phys. Lett.
70
,
696
698
(
1997
).
40.
D.
Bergström
,
J.
Powell
, and
A. F. H.
Kaplan
, “
The absorption of light by rough metal surfaces—A three-dimensional ray-tracing analysis
,”
J. Appl. Phys.
103
,
103515
(
2008
).
41.
I.
GeorgakopouloS-Soares
,
E. L.
Papazoglou
, and
A. P.
Markopoulos
, “
On the use of the Perlin noise function to calculate the laser absorption coefficient by rough surfaces
,”
Simul. Modell. Pract. Theory
124
,
102722
(
2023
).
42.
H. R.
Abedi
and
M.
Hoseinpour Gollo
, “
An experimental study of the effects of surface roughness and coating of Cr2O3 layer on the laser-forming process
,”
Opt. Laser Technol.
109
,
336
347
(
2019
).
43.
H.
Mustafa
,
M.
Mezera
,
D. T. A.
Matthews
, and
G.R.B.E.
Römer
, “
Effect of surface roughness on the ultrashort pulsed laser ablation fluence threshold of zinc and steel
,”
Appl. Surf. Sci.
488
,
10
21
(
2019
).
44.
Y.
Li
,
F.
Wang
,
H.
Liu
,
L.
Yang
, and
P.
Zhang
, “
Effect of surface roughness on the performances of laser-welded Invar 36 alloy joints
,”
Opt. Laser Technol.
162
,
109307
(
2023
).
You do not currently have access to this content.