Laser-induced shock wave (LSW) represents a significant phenomenon arising from the interaction between laser radiation and matter. In this study, we establish a finite element and optimization model constrained by a physical framework. Utilizing multichannel photon Doppler velocimeter experimental data as the target for matching, we directly acquire the spatiotemporal pressure characteristics of LSW through the multi-island genetic algorithm. The optimized outcomes show deviations from experimental results within 10%. Research reveals that the spatial uniformity of pressure deteriorates with increasing power density, accompanied by a gradual reduction in the proportion of peak pressure. Temporally, aside from the pressure caused by plasma, there are some small pressure peaks. When the laser's full width half maximum reaching 100 or 200 ns, the pressure decays prematurely. The duration of pressure does not extend to two to three times the duration of the laser pulse.

1.
N. C.
Anderholm
, “
Laser-generated stress waves
,”
Appl. Phys. Lett.
16
,
113
115
(
1970
).
2.
B. P.
Fairand
,
A. H.
Clauer
,
R. G.
Jung
, and
B. A.
Wilcox
, “
Quantitative assessment of laser-induced stress waves generated at confined surfaces
,”
Appl. Phys. Lett.
25
,
431
433
(
2003
).
3.
C. S.
Montross
,
V.
Florea
, and
M. V.
Swain
, “
The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum
,”
J. Mater. Sci.
36
,
1801
1807
(
2001
).
4.
C.
Engebretsen
,
A.
Palazotto
, and
K.
Langer
, “
Integrated finite element & optimization model for laser shock pressure impulse shape determination
,”
Eng. Res. Express
1
,
015020
(
2019
).
5.
J. P.
Romain
,
F.
Bauer
,
D.
Zagouri
, and
M.
Boustie
, “
Measurement of laser induced shock pressures using PVDF gauges
,”
AIP Conf. Proc.
309
,
1915
1918
(
1994
).
6.
L. M.
Barker
, “
The accuracy of visar instrumentation
,”
AIP Conf. Proc.
429
,
833
836
(
1998
).
7.
D. H.
Dolan
, “
Extreme measurements with photonic Doppler velocimetry (PDV)
,”
Rev. Sci. Instrum.
91
,
051501
(
2020
).
8.
Z. U.
Rehman
,
A.
Raza
,
H.
Qayyum
,
S.
Ullah
, and
S.
Mahmood
, “
Characterization of laser-induced shock waves generated during infrared laser ablation of copper by the optical beam deflection method
,”
Appl. Opt.
61
,
8606
8612
(
2022
).
9.
Y.
Qian
,
J.
Lu
, and
X.
N
, “
Study of laser-induced plasma shock waves by the probe beam deflection technique
,”
Chin. Opt. Lett.
7
,
410
412
(
2009
).
10.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
, “
Physical study of laser-produced plasma in confined geometry
,”
J. Appl. Phys.
68
,
775
784
(
1990
).
11.
B.
Wu
and
Y. C.
Shin
, “
A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments
,”
J. Appl. Phys.
97
,
113517
(
2005
).
12.
B. S.
Yilbas
,
S. B.
Mansoor
, and
A.
Arif
, “
Laser shock processing: Modeling of evaporationand pressure field developed in the laser-produced cavity
,”
Int. J. Adv. Manuf. Technol.
42
,
250
262
(
2009
).
13.
A.
Rondepierre
,
S.
Ünaldi
,
Y.
Rouchausse
et al, “
Beam size dependency of a laser-induced plasma in confined regime: Shortening of the plasma release: Influence on pressure and thermal loading
,”
Opt. Laser Technol.
135
,
106689
(
2021
).
14.
B.
Aubert
,
D.
Hebert
,
J.-L.
Rullier
,
E.
Lescoute
,
L.
Videau
, and
L.
Berthe
, “
Simulation of laser-driven cratering experiments on aluminum
,”
J. Laser Appl.
31
,
042014
(
2019
).
15.
S.
Bardy
,
B.
Aubert
,
L.
Berthe
,
P.
Combis
,
D.
Hébert
,
E.
Lescoute
,
J.-L.
Rullier
, and
L.
Videau
, “
Numerical study of laser ablation on aluminum for shock-wave applications: Development of a suitable model by comparison with recent experiments
,”
Opt. Eng.
56
,
011014
(
2016
).
16.
S.
Bardy
,
B.
Aubert
,
T.
Bergara
et al, “
Development of a numerical code for laser-induced shock waves applications
,”
Opt. Laser Technol.
124
,
105983
(
2020
).
17.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
, and
E.
Bartnicki
, “
Wavelength dependent of laser shock-wave generation in the water-confinement regime
,”
J. Appl. Phys.
85
,
7552
7555
(
1999
).
18.
K.
König
,
F.
Bauerfeld
,
D.
Sauer
et al,
Femtosecond Laser Nanomachining of Silicon Wafers and Two-Photon Nanolithography for Stem Cell Research
(
Elsevier
,
New York
,
2007
), Vol. 3, pp.
287
296
.
19.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
, and
E.
Bartnicki
, “
Laser shock processing of materials: Experimental study of breakdown plasma effects at the surface of confining water
,”
Proc. SPIE
3097
,
570
575
(
1997
).
20.
J.
Mathew
,
R.
Kshirsagar
,
S.
Zabeen
,
N.
Smyth
,
S.
Kanarachos
,
K.
Langer
, and
M. E.
Fitzpatrick
, “
Machine learning-based prediction and optimisation system for laser shock peening
,”
Appl. Sci.
11
,
2888
2910
(
2021
).
21.
S.
Golabi
,
M. R.
Vakil
, and
B.
Amirsalari
, “
Multi-objective optimization of residual stress and cost in laser shock peening process using finite element analysis and PSO algorithm
,”
Lasers Manuf. Mater. Process.
6
,
398
423
(
2019
).
22.
D. V.
Srinivasan
and
S.
Idapalapati
, “
Review of debonding techniques in adhesively bonded composite structures for sustainability
,”
Sustain. Mater. Technol.
30
,
e00345
(
2021
).
23.
L.
Ferrante
,
J.
Tirillò
,
F.
Sarasini
,
F.
Touchard
,
R.
Ecault
,
M. A.
Vidal Urriza
,
L.
Chocinski-Arnault
, and
D.
Mellier
, “
Behaviour of woven hybrid basalt-carbon/epoxy composites subjected to laser shock wave testing: Preliminary results
,”
Compos. Part BEng.
78
,
162
173
(2015).
24.
E.
Gay
,
L.
Berthe
,
E.
Buzaud
,
M.
Boustie
, and
M.
Arrigoni
, “
Shock adhesion test for composite bonded assembly using a high pulsed power generator
,”
J. Appl. Phys.
114
,
013502
(
2013
).
25.
Z.
Gu
,
M.
Perton
,
S. E.
Kruger
et al, “
Laser induced shock waves for composites adhesive bond testing
,”
AIP Conf. Proc.
1211
,
295
302
(
2010
).
26.
W.
Haonian
,
Y.
Li
,
T.
Yuyuan
, and
N.
Xiangfan
, “
Method improving low signal-to-noise ratio of velocity test signals for laser-induced shock waves
,”
Opt. Laser Technol.
155
,
108362
(
2022
).
27.
Dassault
Systèmes
, “SIMULIA User Assistance 2017,” Dassault Systemes Simulia, Inc.; see https://abaqus-docs.mit.edu/2017/English/DSSIMULIA_Established.htm.
28.
R.
Seddik
,
A.
Rondepierre
,
S.
Prabhakaran
,
L.
Morin
,
V.
Favier
,
T.
Palin-Luc
, and
L.
Berthe
, “
Identification of constitutive equations at very high strain rates using shock wave produced by laser
,”
Eur. J. Mech. A
92
,
104432
(
2022
).
29.
R. A.
Brockman
,
W. R.
Braisted
,
S. E.
Olson
,
R. D.
Tenaglia
,
A. H.
Clauer
,
K.
Langer
, and
M. J.
Shepard
, “
Prediction and characterization of residual stresses from laser shock peening
,”
Int. J. Fatigue
36
,
96
108
(
2012
).
30.
L.
Lapostolle
,
L.
Morin
,
K.
Derrien
,
L.
Berthe
, and
O.
Castelnau
, “
Fast numerical estimation of residual stresses induced by laser shock peening
,”
Eur. J. Mech. A
97
,
104844
(
2023
).
31.
N.
Hfaiedh
,
P.
Peyre
,
H.
Song
,
I.
Popa
,
V.
Ji
, and
V.
Vignal
, “
Finite element analysis of laser shock peening of 2050-T8 aluminum alloy
,”
Int. J. Fatigue
70
,
480
489
(
2015
).
32.
P.
Li
,
S.
Huang
,
H.
Xu
,
Y.
Li
,
Y.
Hou
,
Q.
Wang
,
W.
Fu
, and
Y.
Fang
, “
Numerical simulation and experiments of titanium alloy engine blades based on laser shock processing
,”
Aerosp. Sci. Technol.
40
,
164
170
(
2015
).
33.
X.
Nie
,
W.
He
,
Z.
Cao
,
J.
Song
,
X.
Li
,
Z.
Pang
, and
X.
Yan
, “
Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy
,”
Mater. Sci. Eng. A
822
,
141658
(
2021
).
34.
P.
Peyre
,
L.
Berthe
,
X.
Scherpereel
, and
R.
Fabbro
, “
Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour
,”
J. Mater. Sci.
33
,
1421
1429
(
1998
).
35.
X.
Nie
,
Y.
Tang
,
F.
Zhao
,
Y.
Li
,
W.
He
,
C.
Wei
,
X.
Wang
,
H.
Wu
,
L.
Yan
, “
Experimental study on the pressure characteristics of laser-induced shock waves under different energy distribution
,”
Phys. Scr.
98
,
075602
(
2023
).
36.
P.
Peyre
,
L.
Berthe
,
X.
Scherpereel
,
R.
Fabbro
, and
E.
Bartnicki
, “
Experimental study of laser-driven shock waves in stainless steels
,”
J. Appl. Phys.
84
,
5985
5992
(
1998
).
37.
B.
Sun
,
H.
Qiao
, and
J.
Zhao
, “
Accurate numerical modeling of residual stress fields induced by laser shock peening
,”
AIP Adv.
8
,
095203
(
2018
).
38.
R.
Schafer
, “
What is a Savitzky-Golay filter? [Lecture notes]
,”
IEEE Signal Process. Mag.
28
,
111
117
(
2011
).
39.
D. M.
Russell
, “
Error measures for comparing transient data: Part I: Development of a comprehensive error measure part II: Error measures case study
,” in
The Proceedings of the 68th Shock and Vibration Symposium
, Hunt Valley, MA (
2000
), Vol. 68, pp. 175–198.
40.
R. R.
Gattass
and
E.
Mazur
, “
Femtosecond laser micromachining in transparent materials
,”
Nat. Photonics
2
,
219
225
(
2008
).
41.
L.
Kou
,
D.
Labrie
, and
P.
Chylek
, “
Refractive indices of water and ice in the 065- to 25-μm spectral range
,”
Appl. Opt.
32
,
3531
3540
(
1993
).
42.
C.
Zhang
,
Study on the Dynamics of Bubble Cavitation Between Rigid Wall and Elastic Boundary
(
China Jiliang University
, Hangzhou,
2021
).
43.
T. G.
Leighton
,
A. J.
Walton
, and
M. J. W.
Pickworth
, “
Primary Bjerknes forces
,”
Eur. J. Phys.
11
,
47
50
(
1990
).
44.
T.
Takata
,
M.
Enoki
,
P.
Chivavibul
,
A.
Matsui
, and
Y.
Kobayashi
, “
Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening
,”
Mater. Trans.
57
,
1776
1783
(
2016
).
45.
G.
Sinibaldi
,
A.
Occhicone
,
F. A.
Pereira
,
D.
Caprini
,
L.
Marino
,
F.
Michelotti
, and
C. M.
Casciola
, “
Laser induced cavitation: Plasma generation and breakdown shockwave
,”
Phys. Fluids
31
,
103302
(
2019
).
46.
K.
Hayasaka
,
M.
Kameda
,
Y.
Tagawa
, and
S.
Yamamoto
, “
On pressure impulse of a laser-induced underwater shock wave
,”
J. Fluid Mech.
808
,
5
18
(
2016
).
47.
J.
Long
,
M. H.
Eliceiri
,
Y.
Ouyang
,
Y.
Zhang
,
X.
Xie
, and
C. P.
Grigoropoulos
, “
Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets
,”
Opt. Lasers Eng.
137
,
106334
(
2021
).
48.
T. T. P.
Nguyen
,
R.
Tanabe
, and
Y.
Ito
, “
Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique
,”
Appl. Phys. Lett.
102
,
124103
(
2013
).
49.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
,
L.
Tollier
, and
E.
Bartnicki
, “
Shock waves from a water-confined laser-generated plasma
,”
J. Appl. Phys.
82
,
2826
2832
(
1997
).
50.
J.
Radziejewska
,
A.
Kaczmarek
,
T.
Mościcki
, and
J.
Hoffman
, “
Temporal evolution of pressure generated by a nanosecond laser pulse used for assessment of adhesive strength of the tungsten–zirconium–borides coatings
,”
Materials
14
,
7111
(
2021
).
51.
M.
Scius-Bertrand
,
L.
Videau
,
A.
Rondepierre
et al, “
Laser induced plasma characterization in direct and water confined regimes: New advances in experimental studies and numerical modelling
,”
J. Phys. D: Appl. Phys.
54
,
055204
(
2020
).
52.
R.
Paschotta
,
Laser-Induced Breakdown—An Encyclopedia Article
(
RP Photonics AG
, Frauenfeld,
2008
).
53.
M. H.
Niemz
, “
Threshold dependence of laser-induced optical breakdown on pulse duration
,”
Appl. Phys. Lett.
66
,
1181
1183
(
1995
).
You do not currently have access to this content.