Laser transmission welding is a highly accurate method for joining plastics, but its diverse process parameters require effective modeling for optimal results. Traditional artificial neural networks (ANNs) typically establish predictive models between laser processing parameters and welding strength, neglecting the crucial role of welding morphology in feature extraction, thus diminishing accuracy. To address this, we developed a serial ANN model based on statistically evident correlations, which predicts joint morphology and strength sequentially, resulting in a 47% improvement in predictive accuracy and a mean error of just 7.13%. This two-layered approach effectively reduces the stepwise propagation of errors in ANNs, allowing the first layer to provide a refined data representation for the second layer to predict welding strength. Furthermore, finding the optimal laser parameter set is time-consuming and computationally demanding with traditional ANN-based optimization methods. To address this, we integrated the Markov decision process with the serial ANN for the first time and proposed a novel varying step strategy for the model, enabling a balance of swift convergence and avoidance of suboptimal solutions. Notably, the Markov-serial ANN model attained enhanced optimization results using only 15.5% of the computational resources required by a standard parameter interval optimization methodology. Welding experiments verified the reliability of the Markov-serial ANN, achieving a mean error of 4.54% for welding strength.

1.
S.
Verma
,
N.
Sharma
,
S.
Kango
, and
S.
Sharma
, “
Developments of PEEK (polyetheretherketone) as a biomedical material: A focused review
,”
Eur. Polym. J.
147
,
110295
(
2021
).
2.
J.-N.
Dai
,
S.-Q.
Kou
,
H.-Y.
Yang
,
Z.-B.
Xu
,
S.-L.
Shu
,
F.
Qiu
,
Q.-C.
Jiang
, and
L.-C.
Zhang
, “
High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature
,”
Compos. Struct.
295
,
115837
(
2022
).
3.
Y.
Liu
,
W.
Zhang
,
J.
Liu
,
Y.
Guan
, and
X.
Ding
, “
Study on microstructures and mechanical performance of laser transmission welding of poly-ether-ether-ketone (PEEK) and carbon fiber reinforced PEEK (CFR-PEEK)
,”
J. Laser Appl.
34
,
042037
(
2022
).
4.
B.
Acherjee
, “
Laser transmission welding of polymers—A review on process fundamentals, material attributes, weldability, and welding techniques
,”
J. Manuf. Process.
60
,
227
246
(
2020
).
5.
B.
Acherjee
, “
Laser transmission welding of polymers—A review on welding parameters, quality attributes, process monitoring, and applications
,”
J. Manuf. Process.
64
,
421
443
(
2021
).
6.
B.
Acherjee
,
A. S.
Kuar
,
S.
Mitra
, and
D.
Misra
, “
Empirical modeling and multi-response optimization of laser transmission welding of polycarbonate to ABS
,”
Lasers Manuf. Mater. Process.
2
,
103
123
(
2015
).
7.
B.
Acherjee
,
A. S.
Kuar
,
S.
Mitra
,
D.
Misra
, and
S.
Acharyya
, “
Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling
,”
Opt. Laser Technol.
44
,
1372
1383
(
2012
).
8.
B.
Acherjee
,
D.
Maity
, and
A. S.
Kuar
, “
Parameters optimisation of transmission laser welding of dissimilar plastics using RSM and flower pollination algorithm integrated approach
,”
Int. J. Math. Model. Numer. Optim.
8
,
1
2
(
2017
).
9.
Y.
Li
,
T. H.
Lee
,
C.
Wang
,
K.
Wang
,
C.
Tan
,
M.
Banu
, and
S. J.
Hu
, “
An artificial neural network model for predicting joint performance in ultrasonic welding of composites
,”
Proc. CIRP
76
,
85
88
(
2018
).
10.
R.
Masoudi Nejad
,
N.
Sina
,
D.
Ghahremani Moghadam
,
R.
Branco
,
W.
Macek
, and
F.
Berto
, “
Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters
,”
Int. J. Fatigue
160
,
106840
(
2022
).
11.
S. A.
Bagherzadeh
,
M.
Shamsipour
,
M. J.
Kholoud
, and
M. H. R.
Dehkordi
, “
ANN modeling and multiobjective genetic algorithm optimization of pulsed laser welding of Ti6Al4V alloy sheets with various thicknesses
,”
J. Laser Appl.
33
,
012056
(
2021
).
12.
P.
Salhan
,
R.
Singh
,
P.
Jain
, and
R.
Butola
, “
Prediction of heat generation and microstructure of AA7075 friction stir welding using ANN: Effect of process parameters
,”
Manuf. Lett.
32
,
5
9
(
2022
).
13.
R.
Pratap Singh
,
A.
Singh
, and
A.
Singh
, “
Optimization of hardness of weld in submerged arc welding
,”
Mater. Today Proc.
26
,
1827
1830
(
2020
).
14.
H.
Wang
,
Z.
Zhang
, and
L.
Liu
, “
Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network
,”
J. Manuf. Process.
63
,
109
120
(
2021
).
15.
M. R.
Nakhaei
,
N. B.
Mostafa Arab
, and
F.
Kordestani
, “
Modeling of weld lap-shear strength for laser transmission welding of thermoplastic using artificial neural network
,”
Adv. Mater. Res.
445
,
454
459
(
2012
).
16.
Y.
Li
,
B.
Yu
,
B.
Wang
,
T. H.
Lee
, and
M.
Banu
, “
Online quality inspection of ultrasonic composite welding by combining artificial intelligence technologies with welding process signatures
,”
Mater. Des.
194
,
108912
(
2020
).
17.
K.
Wang
,
D.
Shriver
,
Y.
Li
,
M.
Banu
,
S. J.
Hu
,
G.
Xiao
,
J.
Arinez
, and
H.-T.
Fan
, “
Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites
,”
J. Manuf. Process.
29
,
124
132
(
2017
).
18.
B.
Acherjee
, “
FEM-ANN sequential modelling of laser transmission welding for prediction of weld pool dimensions
,” in
Non-Conventional Machining in Modern Manufacturing Systems
(
IGI Global
,
Hershey, PA
,
2019
), pp.
249
261
.
19.
Q.
Zhu
,
Z.
Liu
, and
J.
Yan
, “
Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks
,”
Comput. Mech.
67
,
619
635
(
2021
).
20.
M.
Akbari
,
S.
Saedodin
,
A.
Panjehpour
,
M.
Hassani
,
M.
Afrand
, and
M. J.
Torkamany
, “
Numerical simulation and designing artificial neural network for estimating melt pool geometry and temperature distribution in laser welding of Ti6Al4V alloy
,”
Optik
127
,
11161
11172
(
2016
).
21.
A.
Gaikwad
,
B.
Giera
,
G. M.
Guss
,
J.-B.
Forien
,
M. J.
Matthews
, and
P.
Rao
, “
Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion—A single-track study
,”
Addit. Manuf.
36
,
101659
(
2020
).
22.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
,
422
440
(
2021
).
23.
Y.
Xiong
,
J.
Wu
,
C.
Deng
, and
Y.
Wang
, “
Machining process parameters optimization for heavy-duty CNC machine tools in sustainable manufacturing
,”
Int. J. Adv. Manuf. Technol.
87
,
1237
1246
(
2016
).
24.
D.
Kumar
,
N. S.
Sarkar
,
B.
Acherjee
, and
A. S.
Kuar
, “
Beam wobbling effects on laser transmission welding of dissimilar polymers: Experiments, modeling, and process optimization
,”
Opt. Laser Technol.
146
,
107603
(
2022
).
25.
D.
Kumar
,
S.
Ganguly
,
B.
Acherjee
, and
A. S.
Kuar
, “
Performance evaluation of TWIST welding using machine learning assisted evolutionary algorithms
,”
Arab. J. Sci. Eng.
49
,
2411
2441
(
2024
).
26.
D.
Zhao
,
W.
Wang
,
D.
Ren
, and
K.
Zhao
, “
Research on ultrasonic welding of copper wire harness and aluminum alloy: Based on experimental method and GA-ANN model
,”
J. Mater. Res. Technol.
22
,
3180
3191
(
2023
).
27.
B.
Acherjee
,
D.
Misra
,
D.
Bose
, and
S.
Acharyya
, “
Optimal process design for laser transmission welding of acrylics using desirability function analysis and overlay contour plots
,”
Int. J. Manuf. Res.
6
,
49
61
(
2011
).
28.
B.
Acherjee
,
A. S.
Kuar
,
S.
Mitra
, and
D.
Misra
, “
A sequentially integrated multi-criteria optimization approach applied to laser transmission weld quality enhancement—A case study
,”
Int. J. Adv. Manuf. Technol.
65
,
641
650
(
2013
).
29.
A.
Jansson
,
S.
Kouvo
,
A.
Salminen
, and
V.
Kujanpää
,
The Effect of Parameters on Laser Transmission Welding of Polymers
(
AIP Publishing
,
New York, NY
,
2003
).
30.
X.
Wang
,
X.
Zhong
,
W.
Liu
,
B.
Liu
, and
H.
Liu
, “
Investigation on enhancement of weld strength between PMMA and PBT in laser transmission welding—Using intermediate material
,”
J. Appl. Polym. Sci.
133
,
44167
(
2016
).
31.
N. D.
Cook
, “
Correlations between input and output units in neural networks
,”
Cogn. Sci.
19
,
563
574
(
1995
).
32.
J.
Zou
,
Y.
Han
, and
S.-S.
So
, “
Overview of artificial neural networks
,” in
Artificial Neural Networks: Methods and Applications
, edited by
D. J.
Livingstone
(
Humana Press
,
Totowa
,
NJ
,
2009
), pp.
14
22
.
33.
K. G.
Sheela
and
S. N.
Deepa
, “
Review on methods to fix number of hidden neurons in neural networks
,”
Math. Probl. Eng.
2013
,
e425740
(
2013
).
34.
S. R.
Dubey
,
S. K.
Singh
, and
B. B.
Chaudhuri
, “
Activation functions in deep learning: A comprehensive survey and benchmark
,”
Neurocomputing
503
,
92
108
(
2022
).
35.
M. L.
Puterman
,
Markov Decision Processes: Discrete Stochastic Dynamic Programming
(
Wiley
,
New York
,
2014
).
36.
R.
Saunders
,
C.
Butler
,
J.
Michopoulos
,
D.
Lagoudas
,
A.
Elwany
, and
A.
Bagchi
, “
Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates
,”
npj Comput. Mater.
7
,
1
11
(
2021
).
37.
S.
Ramalingam
and
B. F.
von Turkovich
, “
Structure–property relations in free machining steels
,”
J. Eng. Ind.
102
,
91
96
(
1980
).
38.
A.
Cascardi
and
F.
Micelli
, “
ANN-based model for the prediction of the bond strength between FRP and concrete
,”
Fibers
9
,
46
(
2021
).
39.
J.
Suthar
,
J.
Persis
, and
R.
Gupta
, “
Critical parameters influencing the quality of metal castings: A systematic literature review
,”
Int. J. Qual. Reliab. Manage.
40
,
53
82
(
2021
).
40.
P.
Aivaliotis-Apostolopoulos
and
D.
Loukidis
, “
Swarming genetic algorithm: A nested fully coupled hybrid of genetic algorithm and particle swarm optimization
,”
PLoS One
17
,
e0275094
(
2022
).
41.
J. E.
Richie
and
C.
Ababei
, “
Optimization of patch antennas via multithreaded simulated annealing based design exploration
,”
J. Comput. Des. Eng.
4
,
249
255
(
2017
).
42.
L.
Booker
,
Perspectives on Adaptation in Natural and Artificial Systems
(
Oxford University Press
,
Oxford, England
,
2005
).
43.
S.
Ruder
, “An overview of gradient descent optimization algorithms” (
2017
).
44.
See supplemental material online for the full factorial experiment results used as the training and testing data set for this study, as well as detailed descriptions of the morphological and mechanical characterization methods.
You do not currently have access to this content.