Plume are common physical phenomena in fiber laser keyhole welding and have serious negative effects on the welding process. Based on this, this paper explores the regulation law of conventional shielding gas flow on plume. The results show that the shielding gas has a very significant effect on the suppression of the slender part of the plume, and the greater the gas flow rate, the better the plume removal effect. The addition of the shielding gas makes the welding process more stable, the molten pool flows stably, and the frequency of spatter eruption is reduced. Under the experimental conditions, the optimal shielding gas flow rate is around 15 l/min, and the penetration depth and width are increased by about 10% and decreased by about 22%, respectively, compared with that without adding the shielding gas. Based on the gas flow simulation, the gas flow pressure (about 132 Pa) generated by an appropriate amount of shielding gas (about 15 l/min) can press the liquid column and spatter near the keyhole mouth into the molten pool to avoid the spatter eruption. Excessive shielding gas flow will interfere with the flow of the molten pool excessively, and the weld surface will show a serious undercut phenomenon.

1.
P.
Saha
,
S.
Datta
,
M. S.
Raza
, and
D. K.
Pratihar
, “
Effects of heat input on weld-bead geometry, surface chemical composition, corrosion behavior and thermal properties of fiber laser-welded nitinol shape memory alloy
,”
J. Mater. Eng. Perform.
28
,
2754
2763
(
2019
).
2.
L.
Sharma
and
R.
Chhibber
, “
Study of weld bead chemical, microhardness & microstructural analysis using submerged arc welding fluxes for linepipe steel applications
,”
Ceram. Int.
46
, 24615–24623 (
2019
).
3.
K.
Hao
,
H.
Wang
,
M.
Gao
,
R.
Wu
, and
X.
Zeng
, “
Laser welding of AZ31B magnesium alloy with beam oscillation
,”
J. Mater. Res. Technol.
8
, 3044–3053 (
2019
).
4.
D.
Wu
,
X.
Hua
,
Y.
Ye
,
L.
Huang
,
F.
Li
, and
Y.
Huang
, “
Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy
,”
J. Phys. D: Appl. Phys.
51,
185604
(
2018
).
5.
S.
Geng
,
W.
Yang
,
P.
Jiang
,
C.
Han
, and
L.
Ren
, “
Numerical study of keyhole dynamics and porosity formation during high-power oscillating laser welding of medium-thick aluminum alloy plates
,”
Int. J. Heat Mass Transfer
194
,
123084
(
2022
).
6.
J.
Čapek
,
K.
Trojan
,
J.
Kec
,
I.
Černý
,
N.
Ganev
, and
S.
Němeček
, “
On the weldability of thick P355NL1 pressure vessel steel plates using laser welding
,”
Materials
14
,
131
(
2021
).
7.
X.
Chen
,
X.
Zhang
,
S.
Pang
,
R.
Hu
, and
J.
Xiao
, “
Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding
,”
Opt. Lasers Eng.
100
,
239
247
(
2018
).
8.
T.
Sibillano
,
A.
Ancona
,
D.
Rizzi
,
V.
Lupo
,
L.
Tricarico
, and
P. M.
Lugarà
, “
Plasma plume oscillations monitoring during laser welding of stainless steel by discrete wavelet transform application
,”
Sensors
10, 3549–3561 (
2010
).
9.
J. L.
Zou
,
X.
Han
,
Y.
Zhao
,
Q.
Wu
, and
R.
Xiao
, “
Investigation on plume formation during fiber laser keyhole welding based on in-situ measurement of particles in plume
,”
J. Manuf. Process.
65
,
153
160
(
2021
).
10.
S. J.
Lee
,
S.
Katayama
,
J. D.
Kim
, and
J.
Suh
, “
The effect of plume generated on the microstructural behavior of the weld mixed zone in high-speed laser dissimilar welding
,”
Metals
11
,
1556
(
2021
).
11.
J.
Li
,
L.
Zhao
,
B. T.
Yi
,
J. Z.
Yu
, and
H. K.
Qing
, “
Analysis of vapor plume and keyhole dynamics in laser welding stainless steel with beam oscillation
,”
Infrared Phys. Technol.
113
, 103536 (
2021
).
12.
F.
Kaufmann
,
J.
Ermer
,
A.
Maier
,
S.
Roth
, and
M.
Schmidt
, “
Influence of plume attenuation under high power laser welding of copper using visible wavelengths
,”
J. Laser Appl.
33
,
042006
(
2021
).
13.
B.
Xue
,
B.
Chang
, and
D.
Du
, “
Monitoring of high-speed laser welding process based on vapor plume
,”
Opt. Laser Technol.
147
,
107649
(
2022
).
14.
B. Q.
Zhu
,
G. L.
Zhang
,
J. L.
Zou
,
N.
Ha
,
Q.
Wu
, and
R.
Xiao
, “
Melt flow regularity and hump formation process during laser deep penetration welding
,”
Opt. Laser Technol.
139
,
106950
(
2021
).
15.
H.
Nakamura
,
Y.
Kawahito
,
K.
Nishimoto
, and
S.
Katayama
, “
Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium
,”
J. Laser Appl.
27
,
032012
(
2015
).
16.
P.
Shcheglov
,
A.
Gumenyuk
,
I.
Gornushkin
,
M.
Rethmeier
, and
V. N.
Petrovskiy
, “
Vapor–plasma plume investigation during high-power fiber laser welding
,”
Laser Phys.
23
,
016001
(
2013
).
17.
J.
Greses
,
P. A.
Hilton
,
C. Y.
Barlow
, and
W. M.
Steen
, “
Plume attenuation under high power Nd:yttrium–aluminum–garnet laser welding
,”
J. Laser Appl.
16
,
9
15
(
2004
).
18.
M.
Li
R. S.
Xiao
,
J.
Zou
,
L.
Wang
,
J.
Xu
, and
Q.
Zhang
, “
A multiple synchronous imaging method for strong illuminants induced during a hot working process
,”
Laser Phys. Lett.
16
,
066003
66003
(
2019
).
19.
G. L.
Zhang
,
B. Q.
Zhu
,
J. L.
Zou
,
Q.
Wu
, and
R.
Xiao
, “
Correlation between the spatters and evaporation vapor on the front keyhole wall during fiber laser keyhole welding
,”
J. Mater. Res. Technol.
9
,
15143
15152
(
2020
).
20.
G. L.
Zhang
,
H.
Kong
,
J. L.
Zou
,
Z. J.
Zhao
, and
R. S.
Xiao
, “
Spatter characteristics of high-power fiber laser deep penetration welding and effect of defocusing amount
,”
Chin. Opt. Lett.
48
,
2202008
(
2021
).
21.
F.
Yang
,
X.
Meng
,
S. N.
Putra
,
A.
Artinov
,
M.
Bachmann
, and
M.
Rethmeier
, “
Numerical analysis of the effect of an oscillating metal vapor plume on the keyhole and molten pool behavior during deep penetration laser beam welding
,”
J. Laser Appl.
35
,
042041
(
2023
).
22.
S.
Pang
,
X.
Shao
,
W.
Li
,
X.
Chen
, and
S.
Gong
, “
Dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during deep penetration fiber laser welding
,”
Appl. Phys. A
122
,
702
(
2016
).
23.
F.
Hugger
,
K.
Hofmann
,
S.
Kohl
,
M.
Dobler
, and
M.
Schmidt
, “
Spatter formation in laser beam welding using laser beam oscillation
,”
Weld. World
59
,
165
172
(
2015
).
24.
J. L.
Zou
,
S. K.
Wu
,
Y.
He
, and
R. S.
Xiao
, “
Distinct morphology of keyhole wall during high power fibre laser deep penetration welding
,”
Sci. Technol. Weld. Joining
20
,
655
658
(
2015
).
25.
G.
Tani
,
A.
Ascari
,
G.
Campana
, and
A.
Fortunato
, “
A study on shielding gas contamination in laser welding of non-ferrous alloys
,”
Appl. Surf. Sci.
254
,
904
907
(
2007
).
26.
J.
Zou
,
B.
Zhu
,
G.
Zhang
,
F.
Jiang
,
Q.
Wu
, and
R.
Xiao
, “
Effect of the laser-induced vapor in the keyhole on the weld surface roughness in fiber laser welding
,”
J. Laser Appl.
34
,
012027
(
2022
).
27.
B.
Ribic
,
T. A.
Palmer
, and
T.
DebRoy
, “Problems and issues in laser-arc hybrid welding,”
Int. Mater. Rev.
54
,
223
–244 (
2009
).
28.
W.
Guan
,
M.
Gao
,
H.
Lv
,
J.
Yuan
,
D.
Chen
,
T.
Zhu
,
Y.
Fang
,
J.
Liu
,
H.
Wang
,
Z.
Tang
, and
W.
Yang
, “
Laser cladding of layered Zr/Cu composite cathode with excellent arc discharge homogeneity
,”
Surf. Coat. Technol.
421
,
127454
(
2021
).
29.
S.
Katayamaa
,
A.
Yohei
,
M.
Mizutani
, and
Y.
Kawahito
, “
Development of deep penetration welding technology with high brightness laser under vacuum
,”
Phys. Procedia
12
,
75
80
(
2011
).
30.
G.
Feng
,
Y.
Wang
,
W.
Luo
,
L.
Hu
, and
D.
Deng
, “
Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint
,”
J. Mater. Res. Technol.
13, 1967–1979 (
2021
).
31.
G.
Tani
,
G.
Campana
,
A.
Fortunato
, and
A.
Ascari
The influence of shielding gas in hybrid LASER-MIG welding
,”
Appl. Surf. Sci.
253
,
8050
8053
(
2007
).
32.
H.
Hiraga
,
T.
Inoue
,
S.
Kamado
, and
Y.
Kojima
, “
Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet
,”
Q. J. Jpn. Weld. Soc.
19
,
591
599
(
2001
).
33.
F. U.
Wangqi
,
L. I.
Tengfei
,
B.
Qian
, and
B.
Li
, “
Optimal design of atmosphere protection system for selective laser melting device based on FLUENT
,”
Electr. Weld. Mach.
49, 78–83 (
2019
).
34.
J. L.
Zou
,
J. J.
Gong
,
X.
Han
, and
Y.
Zhao
, “
Investigation on direct measurement method of particle velocity in the plume for intelligent laser welding-oriented
,”
J. Manuf. Process.
79
, 405–412 (
2022
).
35.
M.
Zhang
,
Z.
Zhang
,
K.
Tang
,
C.
Mao
,
Y.
Hu
, and
G.
Chen
, “
Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10
kW fiber laser
,”
Opt. Laser Technol.
98
,
97
105
(
2018
).
36.
A.
Jraisheh
,
J.
Chutia
, and
V.
Kulkarni
, “
Alteration in structure of underexpanded freejet through gas-dynamic perspective
,”
AIAA J.
59
,
3937
3945
(
2021
).
37.
J.
Holburg
,
M.
Müller
, and
K.
Mann
, “
Improved gas-jet based extreme ultraviolet/soft x-ray laser plasma source
,”
Opt. Express
29, 6620–6628 (
2021
).
38.
J. L.
Zou
,
Z. H.
Huang
,
J. J.
Gong
,
Y.
Zhao
,
Z.
Wang
, and
Q.
Wu
, “
Characterization of micron-sized particles in the focused laser beam during fiber laser keyhole welding
,”
Opt. Laser Technol.
156
,
108463
(
2022
).
39.
J. L.
Zou
,
W. X.
Yang
,
S. K.
Wu
,
Y.
He
, and
R.
Xiao
, “
Effect of plume on weld penetration during high-power fiber laser welding
,”
J. Laser Appl.
28
,
022003
(
2016
).
You do not currently have access to this content.