Aluminum and its alloys are widely used in various applications including e-mobility applications due to their lightweight nature, high corrosion resistance, good electrical conductivity, and excellent processability such as extrusion and forming. However, aluminum and its alloys are difficult to process with a laser beam due to their high thermal conductivity and reflectivity. In this article, the two most used laser processes, i.e., laser welding and laser powder bed fusion (LPBF) additive manufacturing, for processing of aluminum have been studied. There are many common laser-material interaction mechanisms and challenges between the two processes. Deep keyhole mode is a preferred method for welding due to improved productivity, while a heat conduction mode is preferred in LPBF aiming for zero-defect parts. In LPBF, the processing maps are highly desirable to be constructed, which shows the transition zone. Presented numerical modeling provides a more in-depth understanding of porosity formation, and different laser beam movement paths have been tested including circular oscillation paths. High accuracy processing maps can be constructed for LPBF that allows us to minimize tedious and time-consuming experiments. As a result, a modeling framework is a highly viable option for the cost-efficient optimization of process parameters.

1.
N.
Kashaev
,
V.
Ventzke
, and
G.
Çam
, “
Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications
,”
J. Manuf. Process.
36
,
571
600
(
2018
).
2.
F.
Fetzer
,
M.
Sommer
,
R.
Weber
,
J.-P.
Weberpals
, and
T.
Graf
, “
Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi
,”
Opt. Lasers Eng.
108
,
68
77
(
2018
).
3.
I.
Eriksson
,
J.
Powell
, and
A. F. H.
Kaplan
, “
Measurements of fluid flow on keyhole front during laser welding
,”
Sci. Technol. Weld. Join.
16
,
636
641
(
2011
).
4.
K.
Schricker
et al, “
Characterization of keyhole dynamics in laser welding of copper by means of high-speed synchrotron X-ray imaging
,”
Procedia CIRP
111
,
501
506
(
2022
).
5.
S.
Li
,
G.
Mi
, and
C.
Wang
, “
A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties
,”
J. Manuf. Process.
53
,
12
20
(
2020
).
6.
Z.
Wang
,
J. P.
Oliveira
,
Z.
Zeng
,
X.
Bu
,
B.
Peng
, and
X.
Shao
, “
Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties
,”
Opt. Laser Technol.
111
,
58
65
(
2019
).
7.
L.
Wang
,
Y.
Liu
,
C.
Yang
, and
M.
Gao
, “
Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy
,”
J. Mater. Process. Technol.
292
,
117053
(
2021
).
8.
S.
Geng
,
W.
Yang
,
P.
Jiang
,
C.
Han
, and
L.
Ren
, “
Numerical study of keyhole dynamics and porosity formation during high-power oscillating laser welding of medium-thick aluminum alloy plates
,”
Int. J. Heat Mass Transfer
194
,
123084
(
2022
).
9.
J. P.
Oliveira
,
A. D.
LaLonde
, and
J.
Ma
, “
Processing parameters in laser powder bed fusion metal additive manufacturing
,”
Mater. Des.
193
,
108762
(
2020
).
10.
A. K.
Agrawal
,
B.
Rankouhi
, and
D. J.
Thoma
, “
Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions
,”
Curr. Opin. Solid State Mater. Sci.
26
,
101024
(
2022
).
11.
Q.
Du
,
M.
M’Hamdi
,
M.
Reiersen
,
E. W.
Hovig
, and
K.
Zhang
, “
A fully kinetic phase diagram-coupled multicomponent columnar-to-equiaxed grain transition model with an application to additive manufacturing
,”
Calphad
84
,
102642
(
2024
).
12.
S. T.
Strayer
,
W. J. F.
Templeton
,
F. X.
Dugast
,
S. P.
Narra
, and
A. C.
To
, “
Accelerating high-fidelity thermal process simulation of laser powder bed fusion via the computational fluid dynamics imposed finite element method (CIFEM)
,”
Add. Manuf. Lett.
3
,
100081
(
2022
).
13.
R.
Cunningham
,
Cang
Zhao
,
Niranjan
Parab
,
Christopher
Kantzos
,
Joseph
Pauza
,
Kamel
Fezzaa
,
Tao
Sun
, and
Anthony D.
Rollett
, “
Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging
,”
Science
363
,
849
852
(
2019
).
14.
P.
Gao
,
X.
Lan
,
S.
Yang
,
Z.
Wang
,
X.
Li
, and
L.
Cao
, “
Defect elimination and microstructure improvement of laser powder bed fusion β-solidifying γ-TiAl alloys via circular beam oscillation technology
,”
Mater. Sci. Eng. A
873
,
145019
(
2023
).
15.
T. F.
Flint
,
J. D.
Robson
,
G.
Parivendhan
, and
P.
Cardiff
, “
LaserbeamFoam: Laser ray-tracing and thermally induced state transition simulation toolkit
,”
SoftwareX
21
,
101299
(
2023
).
16.
Z.
Gan
,
Orion L.
Kafka
,
Niranjan
Parab
,
Cang
Zhao
,
Lichao
Fang
,
Olle
Heinonen
,
Tao
Sun
, and
Wing Kam
Liu
, “
Universal scaling laws of keyhole stability and porosity in 3D printing of metals
,”
Nat. Commun.
12
,
2379
(
2021
).
17.
C.
Tan
,
Yuhang
Liu
,
Bingxiao
Xu
,
Houqin
Wang
,
Fuyun
Liu
,
Xiangtao
Gong
,
Zhi
Zeng
,
Bo
Chen
, and
Xiaoguo
Song
, “
Numerical and experimental study of thermal fluid flow and keyhole dynamic in laser welding of aluminum alloy assisted by electromagnetic field
,”
Opt. Laser Technol.
157
,
108718
(
2023
).
18.
O. E.
Godinez-Brizuela
,
D.
Niblett
, and
K. E.
Einarsrud
, “
Microstructural analysis of effective electrode conductivity in molten salt, Na-ZnCl2 batteries
,”
J. Electrochem. Soc.
169
,
090510
(
2022
).
19.
M.
Bayat
,
Aditi
Thanki
,
Sankhya
Mohanty
,
Ann
Witvrouw
,
Shoufeng
Yang
,
Jesper
Thorborg
,
Niels Skat
Tiedje
, and
Jesper Henri
Hattel
, “
Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation
,”
Addit. Manuf.
30
,
100835
(
2019
).
20.
C.
Zhao
,
Niranjan D.
Parab
,
Xuxiao
Li
,
Kamel
Fezzaa
,
Wenda
Tan
,
Anthony D.
Rollett
, and
Tao
Sun
, “
Critical instability at moving keyhole tip generates porosity in laser melting
,”
Science
370
,
1080
1086
(
2020
).
21.
T.
Yu
and
J.
Zhao
, “
Quantifying the mechanisms of keyhole pore evolutions and the role of metal-vapor condensation in laser powder bed fusion
,”
Addit. Manuf.
72
,
103642
(
2023
).
22.
X.
Yang
,
Y.
Li
, and
B.
Li
, “
Formation mechanisms of lack of fusion and keyhole-induced pore defects in laser powder bed fusion process: A numerical study
,”
Int. J. Therm. Sci.
188
,
108221
(
2023
).
23.
Z.
Ren
et al, “
Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion
,”
Science
379
,
89
94
(
2023
).
24.
A.
Otto
,
R. G.
Vázquez
,
U.
Hartel
, and
S.
Mosbah
, “
Numerical analysis of process dynamics in laser welding of Al and Cu
,”
Procedia CIRP
74
,
691
695
(
2018
).
25.
F.
Fetzer
,
C.
Hagenlocher
,
R.
Weber
, and
T.
Graf
, “
Geometry and stability of the capillary during deep-penetration laser welding of AlMgSi at high feed rates
,”
Opt. Laser Technol.
133
,
106562
(
2021
).
26.
M. C.
Sow
,
T.
De Terris
,
O.
Castelnau
,
Z.
Hamouche
,
F.
Coste
,
R.
Fabbro
, and
P.
Peyre
, “
Influence of beam diameter on laser powder bed fusion (L-PBF) process
,”
Addit. Manuf.
36
,
101532
(
2020
).
27.
A. F. H.
Kaplan
and
R. S.
Matti
, “
Absorption peaks depending on topology of the keyhole front and wavelength
,”
J. Laser Appl.
27
,
S29012
(
2015
).
28.
Y.
Wang
,
P.
Jiang
,
J.
Zhao
,
S.
Geng
, and
B.
Xu
, “
Effects of energy density attenuation on the stability of keyhole and molten pool during deep penetration laser welding process: A combined numerical and experimental study
,”
Int. J. Heat Mass Transfer
176
,
121410
(
2021
).
29.
W.
Yuan
,
H.
Chen
,
T.
Cheng
, and
Q.
Wei
, “
Effects of laser scanning speeds on different states of the molten pool during selective laser melting: Simulation and experiment
,”
Mater. Des.
189
,
108542
(
2020
).
30.
See supplementary material online for numerical modeling results of lateral beam movement (100 Hz frequency and 0.75 mm amplitude case) of the laser beam (P = 6.0 kW, a welding speed of 4 m/min, and 560 μm beam diameter) showing melt pool dynamics, slendering-inflation cycles of keyhole shape, and the vapor-filled bubble escaping mechanism (supplementary material 1) and numerical modeling results of circular beam movement (200 Hz frequency and 0.75 mm amplitude case) of the laser beam (P = 6.0 kW, welding speed of 4 m/min, and 560 μm beam diameter) showing the bubble recapturing mechanism by pulling the formed vapor-filled bubbles toward the keyhole by surface tension forces (supplementary material 2).
You do not currently have access to this content.