The authors report incoherent random laser action in systems where the optical feedback is provided by multiple scattering generated by different classes of silver nanoparticles in the colloidal state, having plasmon resonances at different frequencies. They found improved performance of triangular silver nanoplates as compared to nanospheres, with a threshold as low as 1 mJ/cm2 and a 5 times lower optimal silver concentration, due to plasmonic enhancement effects and tuning of the plasmon resonance. The nanoparticles were also tested for stability against illumination by the pump laser, as the onset of pulsed laser melting is comparable to random laser threshold in terms of pump fluence, severely limiting the range of operation of nanoparticles with main plasmon resonance close to the pump wavelength. The optimal approach to choose plasmonic nanoparticles for random lasing must, therefore, take the stability aspect into serious consideration as well as the plasmonic enhancement of random lasing.

1.
H.
Cao
, “
Lasing in random media
,”
Waves Random Media
13
,
R1
R39
(
2003
).
2.
D. S.
Wiersma
, “
The physics and applications of random lasers
,”
Nat. Phys.
4
,
359
367
(
2008
).
3.
A. S. L.
Gomes
,
A. L.
Moura
,
C. B.
De Araújo
, and
E. P.
Raposo
, “
Recent advances and applications of random lasers and random fiber lasers
,”
Prog. Quantum Electron.
78
,
100343
(
2021
).
4.
N. M.
Lawandy
,
R. M.
Balachandran
,
A. S. L.
Gomes
, and
E.
Sauvain
, “
Laser action in strongly scattering media
,”
Nature
368
,
436
438
(
1994
).
5.
C.
Gouedard
,
D.
Husson
,
C.
Sauteret
,
F.
Auzel
, and
A.
Migus
, “
Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders
,”
J. Opt. Soc. Am. B
10
,
2358
2363
(
1993
).
6.
H.
Cao
, “
Random laser action in semiconductor powder
,”
Phys. Rev. Lett.
82
,
2278
2281
(
1999
).
7.
B. Q.
Sun
,
M.
Gal
,
Q.
Gao
,
H. H.
Tan
,
C.
Jagadish
,
T.
Puzzer
,
L.
Ouyang
, and
J.
Zou
, “
Epitaxially grown GaAsN random laser
,”
J. Appl. Phys.
93
,
5855
5858
(
2003
).
8.
C. J. S.
De Matos
,
L.
De
,
S.
Menezes
,
A. M.
Brito-Silva
,
M. A.
Martinez Gámez
,
A. S. L.
Gomes
, and
C. B.
De Araújo
, “
Random fiber laser
,”
Phys. Rev. Lett.
99
,
153903
(
2007
).
9.
M.
Siddique
,
Li.
Yang
,
Q. Z.
Wang
, and
R. R.
Alfano
, “
Mirrorless laser action from optically pumped dye-treated animal tissues
,”
Opt. Commun.
117
,
475
479
(
1995
).
10.
E.
Le Ru
and
P.
Etchegoin
,
Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects
(
Elsevier
, Amsterdam, The Netherlands,
2008
).
11.
J.
Liu
,
H.
He
,
D.
Xiao
,
S.
Yin
,
W.
Ji
,
S.
Jiang
,
D.
Luo
,
B.
Wang
, and
Y.
Liu
, “
Recent advances of plasmonic nanoparticles and their applications
,”
Materials (Basel)
11
,
1833
(
2018
).
12.
G. D.
Dice
,
S.
Mujumdar
, and
A. Y.
Elezzabi
, “
Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser
,”
Appl. Phys. Lett.
86
,
131105
(
2005
).
13.
O.
Popov
,
A.
Zilbershtein
, and
D.
Davidov
, “
Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength
,”
Appl. Phys. Lett.
89
,
191116
(
2006
).
14.
Q.
Chang
,
X.
Shi
,
X.
Liu
,
J.
Tong
,
D.
Liu
, and
Z.
Wang
, “
Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region
,”
Nanophotonics
6
,
1151
1160
(
2017
).
15.
Y.
Wan
,
H.
Wang
,
H.
Li
,
R.
Ye
,
X.
Zhang
,
J.
Lyu
, and
Y.
Cai
, “
Low-threshold random lasers enhanced by titanium nitride nanoparticles suspended randomly in gain solutions
,”
Opt. Express
30
,
8222
(
2022
).
16.
Y.
Sun
,
Z.
Wang
,
X.
Shi
,
Y.
Wang
,
X.
Zhao
,
S.
Chen
,
J.
Shi
,
J.
Zhou
, and
D.
Liu
, “
Coherent plasmonic random laser pumped by nanosecond pulses far from the resonance peak of silver nanowires
,”
J. Opt. Soc. Am. B
30
,
2523
(
2013
).
17.
X.
Meng
,
K.
Fujita
,
S.
Murai
,
T.
Matoba
, and
K.
Tanaka
, “
Plasmonically controlled lasing resonance with metallic−dielectric core−shell nanoparticles
,”
Nano Lett.
11
,
1374
1378
(
2011
).
18.
X.
Meng
,
K.
Fujita
, and
K.
Tanaka
, “
Random lasing actions induced by silver nanoprisms
,”
J. Jpn. Soc. Powder Powder Metall.
56
,
645
650
(
2009
).
19.
J.
Ziegler
,
M.
Djiango
,
C.
Vidal
,
C.
Hrelescu
, and
T. A.
Klar
, “
Gold nanostars for random lasing enhancement
,”
Opt. Express
23
,
15152
(
2015
).
20.
Y.-J.
Lee
,
C.-Y.
Chou
,
Z.-P.
Yang
,
T. B. H.
Nguyen
,
Y.-C.
Yao
,
T.-W.
Yeh
,
M.-T.
Tsai
, and
H.-C.
Kuo
, “
Flexible random lasers with tunable lasing emissions
,”
Nanoscale
10
,
10403
10411
(
2018
).
21.
L.
Long
,
D.
He
,
W.
Bao
,
M.
Feng
,
P.
Zhang
,
D.
Zhang
, and
S.
Chen
, “
Localized surface plasmon resonance improved lasing performance of Ag nanoparticles/organic dye random laser
,”
J. Alloys Compd.
693
,
876
881
(
2017
).
22.
Z.
Wang
,
X.
Meng
,
S. H.
Choi
,
S.
Knitter
,
Y. L.
Kim
,
V. M.
Shalaev
, and
A.
Boltasseva
, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,”
Nano Lett.
16
(
4
),
2471
2477
(
2016
).
23.
R.
Gayathri
,
K.
Monika
,
V. M.
Murukeshan
, and
C.
Vijayan
, “
Low threshold incoherent random lasing with spectral overlap optimization of size-tuned plasmonic nanorods
,”
Opt. Laser Technol.
139
,
106959
(
2021
).
24.
M.
Cao
,
M.
Wang
,
Z.
Wang
,
L.
Zang
,
H.
Liu
,
S.
Xiao
,
M. M. F.
Yuen
,
Y.
Wang
,
Y.
Zhang
, and
J.
Yao
, “
Plasmonically enhanced colloidal quantum dot/graphene doped polymer random lasers
,”
Materials (Basel)
15
,
2213
(
2022
).
25.
Z.
Wang
,
X.
Meng
,
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Nanolasers enabled by metallic nanoparticles: From spasers to random lasers
,”
Laser Photon. Rev.
11
,
1700212
(
2017
).
26.
G.
Compagnini
,
M.
Condorelli
,
M. E.
Fragalà
,
V.
Scardaci
,
I.
Tinnirello
,
O.
Puglisi
,
F.
Neri
, and
E.
Fazio
, “
Growth kinetics and sensing features of colloidal silver nanoplates
,”
J. Nanomater.
2019
,
1
8
.
27.
G. C.
Messina
,
M. G.
Sinatra
,
V.
Bonanni
,
R.
Brescia
,
A.
Alabastri
,
F.
Pineider
,
G.
Campo
,
C.
Sangregorio
,
G.
Li-Destri
,
G.
Sfuncia
,
G.
Marletta
,
M.
Condorelli
,
R.
Proietti Zaccaria
,
F.
De Angelis
, and
G.
Compagnini
, “
Tuning the composition of alloy nanoparticles through laser mixing: The role of surface plasmon resonance
,”
J. Phys. Chem. C
120
,
12810
12818
(
2016
).
28.
Y.
Li
,
Z.
Zheng
,
J.
Yan
,
B.
Lu
, and
X.
Li
, “
A review on pulsed laser preparation of nanocomposites in liquids and their applications in photocatalysis
,”
Catalysts
12
,
1532
(
2022
).
29.
COMSOL, “Optical scattering off a gold nanosphere,” https://www.comsol.com/model/optical-scattering-off-a-gold-nanosphere-14697, COMSOL Multiphysics® v. 6.2. www.comsol.com. COMSOL AB, Stockholm, Sweden.
30.
I. Z.
Kozma
,
P.
Krok
, and
E.
Riedle
, “
Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet
,”
J. Opt. Soc. Am. B
22
,
1479
1485
(
2005
).
31.
H.-J.
Hagemann
,
W.
Gudat
, and
C.
Kunz
, “
Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3
,”
J. Opt. Soc. Am.
65
,
742
744
(
1975
).
32.
R.
Sapienza
, “
Determining random lasing action
,”
Nat. Rev. Phys.
1
,
690
695
(
2019
).
33.
A. E.
Siegman
,
Lasers
(
University Science Books
,
Mill Valley, CA
,
1986
), pp.
491
556
.
34.
P.
Šmejkal
,
J.
Pfleger
,
K.
Šišková
,
B.
Vlčková
,
O.
Dammer
, and
M.
Šlouf
, “
In-situ study of Ag nanoparticle hydrosol optical spectra evolution during laser ablation/fragmentation
,”
Appl. Phys. A
79
,
1307
1309
(
2004
).
35.
M.
Procházka
,
P.
Mojzeš
,
J.
Štěpánek
,
B.
Vlčková
, and
P.-Y.
Turpin
, “
Probing applications of laser-ablated Ag colloids in SERS spectroscopy: Improvement of ablation procedure and SERS spectral testing
,”
Anal. Chem.
69
,
5103
5108
(
1997
).
36.
M. A.
Noginov
,
H. J.
Caulfield
,
N. E.
Noginova
, and
P.
Venkateswarlu
, “
Line narrowing in the dye solution with scattering centers
,”
Opt. Commun.
118
,
430
437
(
1995
).
37.
G. A.
Berger
,
M.
Kempe
, and
A. Z.
Genack
, “
Dynamics of stimulated emission from random media
,”
Phys. Rev. E
56
,
6118
6122
(
1997
).
38.
See supplementary material online for additional data on the pulsed laser melting synthesis of AgNSs from AgNPTs, dynamic light scattering data for the AgNSs colloid, emission spectrum of the control sample and of the AgNPT sample, and extinction spectra of both the AgNSs and AgNPTs used for random lasing.
You do not currently have access to this content.