Simulation of the geometry and internal grain size changes of laser cladding has been extensively studied, with the majority of such simulations focusing on pure metal powders. However, there are fewer simulations for aluminum-based composite coatings by laser cladding. In this paper, a new three-dimensional model of laser cladding composite coatings is proposed, which can accurately determine the geometrical size of the AlSiTiNiCo-WC cladding layer and the internal grain morphology and grain size changes of the cladding layer. The temperature-selective judgment mechanism and material thermal property calculation ensure the calculation accuracy of the composite coating, while the model accurately and intuitively determines the state changes of the composite coating in the process of laser cladding. Furthermore, the model verifies the feasibility of the exponential decay laser source in the simulation of composite cladding, and temperature field analysis accurately predicts the trends of grain morphology and grain size inside the cladding. The simulation results show that the variation of the laser scanning speed has a more pronounced effect on the depth of the cladding layer. The high-temperature gradient at the top of the molten pool is more likely to form fine grains, and the bottom of the cladding layer tends to form coarse columnar crystals with the increase in the internal temperature gradient at the depth. The simulation results were compared with experimental results to validate the accuracy of the simulation process.

1.
J.
Cheng
,
Y.
Xing
,
E.
Dong
,
L.
Zhao
,
H.
Liu
,
T.
Chang
,
M.
Chen
,
J.
Wang
,
J.
Lu
, and
J.
Wan
, “
An overview of laser metal deposition for cladding: Defect formation mechanisms, defect suppression methods and performance improvements of laser-cladded layers
,”
Materials
15
(
16
),
5522
(
2022
).
2.
P.
Xu
,
C. X.
Lin
, and
D. P.
Sun
, “
The effect of scanning velocity on AISI 304 stainless steel laser cladding coatings
,”
Adv. Mater. Res.
591–593
,
1098
1101
(
2012
).
3.
W.
Yuan
,
R.
Li
,
Z.
Chen
,
J.
Gu
, and
Y.
Tian
, “
A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings
,”
Surf. Coat. Technol.
405
,
126582
(
2021
).
4.
Y.
Liu
and
H. M.
Wang
, “
Microstructure and wear property of laser-clad Co3Mo2Si/Coss wear resistant coatings
,”
Surf. Coat. Technol.
205
,
377
382
(
2010
).
5.
X.
Luo
,
Z.
Yao
,
P.
Zhang
, and
D.
Gu
, “
Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties
,”
J. Alloys Compd.
755
,
41
54
(
2018
).
6.
L.
Zhu
,
P.
Xue
,
Q.
Lan
,
G.
Meng
,
Y.
Ren
,
Z.
Yang
,
P.
Xu
, and
Z.
Liu
, “
Recent research and development status of laser cladding: A review
,”
Opt. Laser Technol.
138
,
106915
(
2021
).
7.
K.
Liu
,
Y.
Li
, and
J.
Wang
, “
In-situ reactive fabrication and effect of phosphorus on microstructure evolution of Ni/Ni–Al intermetallic composite coating by laser cladding
,”
Mater. Des.
105
,
171
178
(
2016
).
8.
A.
Emamian
,
S. F.
Corbin
, and
A.
Khajepour
, “
Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings
,”
Surf. Coat. Technol.
205
,
2007
2015
(
2010
).
9.
E.
Chen
,
K.
Zhang
, and
J.
Zou
, “
Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders
,”
Appl. Surf. Sci.
367
,
11
18
(
2016
).
10.
R. L.
Li
,
J.
Li
,
Y. N.
Yan
,
M.
Shao
, and
J.
Li
, “
Tribocorrosion resistance of CoCrFeNiNb laser-clad coatings in the neutral and acid solutions
,”
Opt. Laser Technol.
158
,
108817
(
2023
).
11.
M.
Dhanda
,
B.
Haldar
, and
P.
Saha
, “
Development and characterization of hard and wear resistant MMC coating on Ti-6Al-4V substrate by laser cladding
,”
Proc. Mater. Sci.
6
,
1226
1232
(
2014
).
12.
Z.
Zhang
,
T.
Yu
, and
R.
Kovacevic
, “
Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC
,”
Appl. Surf. Sci.
410
,
225
240
(
2017
).
13.
C.
Yang
,
X.
Cheng
,
H.
Tang
,
X.
Tian
, and
D.
Liu
, “
Influence of microstructures and wear behaviors of the microalloyed coatings on TC11 alloy surface using laser cladding technique
,”
Surf. Coat. Technol.
337
,
97
103
(
2018
).
14.
W.
Pawlak
,
K. J.
Kubiak
,
B. G.
Wendler
, and
T. G.
Mathia
, “
Wear resistant multilayer nanocomposite WC1−x/C coating on Ti–6Al–4V titanium alloy
,”
Tribol. Int.
82
,
400
406
(
2015
).
15.
T.
Zhang
and
R.
Sun
, “
Study on pores and crack sensitivity of Ni-based composite coating by laser cladding
,”
IOP Conf. Ser. Mater. Sci. Eng.
87
,
012096
(
2015
).
16.
P.
Xu
,
C.
Lin
,
C.
Zhou
, and
X.
Yi
, “
Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings
,”
Surf. Coat. Technol.
238
,
9
14
(
2014
).
17.
W.
Gao
,
Z.
Zhang
,
S.
Zhao
,
Y.
Wang
,
H.
Chen
, and
X.
Lin
, “
Effect of a small addition of Ti on the Fe-based coating by laser cladding
,”
Surf. Coat. Technol.
291
,
423
429
(
2016
).
18.
L.
Song
,
G.
Zeng
,
H.
Xiao
,
X.
Xiao
, and
S.
Li
, “
Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders
,”
J. Manuf. Process.
24
,
116
124
(
2016
).
19.
C.
Li
, “
Effect of WC addition on microstructure and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying
,”
Mater. Chem. Phys.
7
, 9–15 (
2019
).
20.
H.
Liao
,
J.
Zhu
,
S.
Chang
,
G.
Xue
,
J.
Pang
, and
H.
Zhu
, “
Lunar regolith—AlSi10Mg composite fabricated by selective laser melting
,”
Vacuum
187
,
110122
(
2021
).
21.
J.
Liu
,
H.
Yu
,
C.
Chen
,
F.
Weng
, and
J.
Dai
, “
Research and development status of laser cladding on magnesium alloys: A review
,”
Opt. Lasers Eng.
93
,
195
210
(
2017
).
22.
C.
Liu
,
C.
Li
,
Z.
Zhang
,
S.
Sun
,
M.
Zeng
,
F.
Wang
,
Y.
Guo
, and
J.
Wang
, “
Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys
,”
Opt. Laser Technol.
123
, 105926 (
2020
).
23.
W. C.
Tseng
and
J. N.
Aoh
, “
Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source
,”
Opt. Laser Technol.
48
,
141
152
(
2013
).
24.
K.
Qi
,
Y.
Yang
,
R.
Sun
,
G.
Hu
,
X.
Lu
,
J.
Li
,
W.
Liang
,
K.
Jin
, and
L.
Xiong
, “
Effect of magnetic field on crack control of Co-based alloy laser cladding
,”
Opt. Laser Technol.
141
,
107129
(
2021
).
25.
Y.
Woo
,
T.
Hwang
,
I.
Oh
,
D.
Seo
, and
Y.
Moon
, “
Analysis on selective laser melting of WC-reinforced H13 steel composite powder by finite element method
,”
Adv. Mech. Eng.
11
,
168781401882220
(
2019
).
26.
P.
Ma
,
Y.
Wu
,
P.
Zhang
, and
J.
Chen
, “
Solidification prediction of laser cladding 316L by the finite element simulation
,”
Int. J. Adv. Manuf. Technol.
103
,
957
969
(
2019
).
27.
P.
Nie
,
O. A.
Ojo
, and
Z.
Li
, “
Modeling analysis of laser cladding of a nickel-based superalloy
,”
Surf. Coat. Technol.
258
,
1048
1059
(
2014
).
28.
S.
Fetni
,
T. M.
Enrici
,
T.
Niccolini
,
S. H.
Tran
,
O.
Dedry
,
R.
Jardin
,
L.
Duchêne
,
A.
Mertens
, and
A. M.
Habraken
, “
2D thermal finite element analysis of laser cladding of 316L + WC composite coatings
,”
Proc. Manuf.
50
,
86
92
(
2020
).
29.
C.
Shen
,
C.
Li
,
Y.
Guo
,
C.
Liu
,
X.
Zhang
, and
X.
Feng
, “
Modeling of temperature distribution and clad geometry of the molten pool during laser cladding of TiAlSi alloys
,”
Opt. Laser Technol.
142
,
107277
(
2021
).
30.
Y.
Li
,
D.
Gu
,
D.
Dai
,
K.
Shi
,
W.
Zhao
, and
X.
Shi
, “
Prediction of crystal nucleation and growth behavior of Fe/Ni-based multi-materials deposited by laser directed energy deposition using a multi-area, multi-layer, and multi-scale phase field calculation (M3-PFC)
,”
Addit. Manuf.
79
,
103946
(
2024
).
31.
Y. S.
Lee
and
W.
Zhang
, “
Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
,”
Addit. Manuf.
12
,
178
188
(
2016
).
32.
M.
Yang
,
L.
Wang
, and
W.
Yan
, “
Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles
,”
Addit. Manuf.
47
,
102286
(
2021
).
33.
Y.
Zhang
and
L.
Liu
, “
Grain growth behavior of ferroelectric ceramics under anisotropic grain boundary energy conditions simulated by the phase field method
,”
Ceram. Int.
48
,
23767
23776
(
2022
).
34.
O. G.
Devojno
,
E.
Feldshtein
,
M. A.
Kardapolava
, and
N. I.
Lutsko
, “
On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy
,”
Opt. Lasers Eng.
106
,
32
38
(
2018
).
35.
J.
Gao
,
C.
Wu
,
Y.
Hao
,
X.
Xu
, and
L.
Guo
, “
Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding
,”
Opt. Laser Technol.
129
,
106287
(
2020
).
36.
H.
Liu
,
X.
Qin
,
S.
Huang
,
Z.
Hu
, and
M.
Ni
, “
Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot
,”
Opt. Lasers Eng.
100
,
38
46
(
2018
).
37.
F.
Wirth
and
K.
Wegener
, “
A physical modeling and predictive simulation of the laser cladding process
,”
Addit. Manuf.
22
,
307
319
(
2018
).
38.
C.
Li
,
M.
Zeng
,
C.
Liu
,
F.
Wang
,
Y.
Guo
,
J.
Wang
,
Y.
Yang
,
W.
Li
, and
Y.
Wang
, “
Microstructure and tribological behavior of laser cladding TiAlSi composite coatings reinforced by alumina–titania ceramics on Ti–6Al–4V alloys
,”
Mater. Chem. Phys.
240
,
122271
(
2020
).
39.
A. V.
Gusarov
,
T.
Laoui
,
L.
Froyen
, and
V. I.
Titov
, “
Contact thermal conductivity of a powder bed in selective laser sintering
,”
Int. J. Heat Mass Transfer
46
,
1103
1109
(
2003
).
40.
R.
Chai
,
Y.
Zhang
,
B.
Zhong
, and
C.
Zhang
, “
Effect of scan speed on grain and microstructural morphology for laser additive manufacturing of 304 stainless steel
,”
Rev. Adv. Mater. Sci.
60
,
744
760
(
2021
).
41.
D. J.
Wu
,
Q.
Li
,
X. K.
Liang
, and
Y. X.
Chen
, “
Effect of scanning path on microstructure and microhardness of laser cladding Ti-6Al-4V alloy
,”
Adv. Mater. Res.
154–155
,
147
150
(
2010
).
You do not currently have access to this content.