This study investigated the temperature dependence of IN718 corrosion behavior in 3.5 wt. % NaCl solution, comparing conventionally rolled (Roll) and SLM-manufactured (SLM) samples. While both exhibited degradation with increasing temperature, the Roll sample presented a significantly higher susceptibility to corrosion by increasing the temperature from 25 to 70 °C. Rapid corrosion current density (icorr) of the Roll sample, which increased from 0.25 to 1.3 μA cm2, suggested the preferential γ-matrix dissolution and microgalvanic attack triggered by Laves phases and carbides acting as preferential dissolution sites. Conversely, the SLM sample showcased less segregation and fewer carbide phases due to its high cooling rate, resulting in a milder icorr rise (0.45–0.6 μA cm2). The findings hold promise for a more comprehensive understanding of IN718 performance and can guide the selection of optimal fabrication methods for components exposed to corrosive and high-temperature environments.

1.
R.
Kumar
,
M.
Kumar
, and
J. S.
Chohan
, “
Material-specific properties and applications of additive manufacturing techniques: A comprehensive review
,”
Bull. Mater. Sci.
44
,
1
(
2021
).
2.
B.
Blakey-Milner
,
P.
Gradl
,
G.
Snedden
,
M.
Brooks
,
J.
Pitot
,
E.
Lopez
,
M.
Leary
,
F.
Berto
, and
A.
du Plessis
, “
Metal additive manufacturing in aerospace: A review
,”
Mater. Des.
209
,
110008
(
2021
).
3.
M.
Yakout
,
M. A.
Elbestawi
, and
S. C.
Veldhuis
, “
A review of metal additive manufacturing technologies
,”
Solid State Phenom.
278
,
1
14
(
2018
).
4.
M. H.
Shaeri Karimi
,
M.
Yeganeh
,
S. R.
Alavi Zaree
, and
M.
Eskandari
, “
Corrosion behavior of 316L stainless steel manufactured by laser powder bed fusion (L-PBF) in an alkaline solution
,”
Opt. Laser Technol.
138
,
106918
(
2021
).
5.
B.
Li
,
T.
Wang
,
P.
Li
,
S.
Wang
, and
L.
Wang
, “
Selective laser melting of 316L stainless steel: Influence of Co-Cr-Mo-W addition on corrosion resistance
,”
Metals (Basel)
11
,
597
(
2021
).
6.
S. M. J.
Moghadas
,
M.
Yeganeh
,
S. R. A.
Zaree
, and
M.
Eskandari
, “
Influence of low temperature heat treatment on microstructure, corrosion resistance and biological performance of 316L stainless steel manufactured by selective laser melting
,”
CIRP J. Manuf. Sci. Technol.
40
,
68
74
(
2023
).
7.
J.
Mutua
,
S.
Nakata
,
T.
Onda
, and
Z.
Chen
, “
Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel
,”
Mater. Des.
139
,
486
497
(
2018
).
8.
M.
Yeganeh
,
M. T.
Shoushtari
, and
P.
Jalali
, “
Evaluation of the corrosion performance of selective laser melted 17-4 precipitation hardening stainless steel in Ringer’s solution
,”
J. Laser Appl.
33
,
042001
(
2021
).
9.
M. T.
Shoushtari
,
M.
Yeganeh
, and
D. G.
Kotoki
, “
Enhanced corrosion resistance of 17-4 PH stainless steel fabricated by laser powder bed fusion in H2SO4 solution
,”
J. Laser Appl.
34
,
022023
(
2022
).
10.
W.
Neng Zhang
,
L.
Zhi Wang
,
Z.
Xue Feng
, and
Y.
Ming Chen
, “
Research progress on selective laser melting (SLM) of magnesium alloys: A review
,”
Optik (Stuttg)
207
,
163842
(
2020
).
11.
B. L.
Zhang
and
H.
Attar
, “
Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications : A review
,”
Adv. Eng. Mater.
18
,
463
475
(
2016
).
12.
M.
Kahvazi
,
M.
Yeganeh
, and
M.
Tavakoli
, “
Microstructure, corrosion behavior, and biocompatibility of Ti-6Al-4V alloy fabricated by LPBF and EBM techniques
,”
Mater. Today Commun.
31
,
103502
(
2022
).
13.
M.
Yeganeh
,
M. T.
Shoushtari
,
A. T.
Khanjar
, and
N. H. J.
Al Hasan
, “
Microstructure evolution, corrosion behavior, and biocompatibility of Ti-6Al-4V alloy manufactured by electron beam melting (EBM) technique
,”
Colloids Surf. A
679
,
132519
(
2023
).
14.
J.
Stroßner
,
M.
Terock
, and
U.
Glatzel
, “
Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM)
,”
Adv. Eng. Mater.
17
,
1099
1105
(
2015
).
15.
Q.
Han
,
Y.
Gu
,
R.
Setchi
,
F.
Lacan
,
R.
Johnston
,
S. L.
Evans
, and
S.
Yang
, “
Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy
,”
Addit. Manuf.
30
,
100919
(
2019
).
16.
W.
Zhang
,
F.
Liu
,
F.
Liu
,
C.
Huang
,
H.
Zheng
,
Q.
Zhang
,
Y.
Zheng
, and
J.
Gao
, “
Microstructural evolution and cracking behavior of Hastelloy X superalloy fabricated by laser directed energy deposition
,”
J. Alloys Compd.
905
,
164179
(
2022
).
17.
Y.
Xu
,
Y.
Gong
,
P.
Li
,
Y.
Yang
, and
Y.
Qi
, “
The effect of laser power on the microstructure and wear performance of IN718 superalloy fabricated by laser additive manufacturing
,”
Int. J. Adv. Manuf. Technol.
108
,
2245
2254
(
2020
).
18.
R. J.
Vikram
,
A.
Singh
, and
S.
Suwas
, “
Effect of heat treatment on the modification of microstructure of selective laser melted (SLM) IN718 and its consequences on mechanical behavior
,”
J. Mater. Res.
35
,
1949
1962
(
2020
).
19.
Q.
Jia
and
D.
Gu
, “
Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties
,”
J. Alloys Compd.
585
,
713
721
(
2014
).
20.
Y.
Chen
,
Y.
Guo
,
M.
Xu
,
C.
Ma
,
Q.
Zhang
, and
L.
Wang
, “
Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser
,”
Mater. Sci. Eng. A
754
,
339
347
(
2019
).
21.
Z.
Song
,
W.
Gao
,
D.
Wang
,
Z.
Wu
,
M.
Yan
, and
L.
Huang
, “
Very-high-cycle fatigue behavior of Inconel 718 alloy fabricated by selective laser melting at elevated temperature
,”
Materials (Basel)
14
,
1001
(
2021
).
22.
P.
Liu
,
S.
Sun
,
M.
Cao
,
J.
Gong
, and
J.
Hu
, “
Microstructural evolution and phase transformation on the X–Y surface of Inconel 718 Ni-based alloys fabricated by selective laser melting under different heat treatment
,”
High Temp. Mater. Processes
38
,
229
236
(
2019
).
23.
E.
Hosseini
and
V. A.
Popovich
, “
A review of mechanical properties of additively manufactured Inconel 718
,”
Addit. Manuf.
30
,
100877
(
2019
).
24.
T.
Bhujangrao
,
F.
Veiga
,
A.
Suárez
,
E.
Iriondo
, and
F.
Girot Mata
, “
High-temperature mechanical properties of IN718 alloy: comparison of additive manufactured and wrought samples
,”
Crystals
10
,
689
(
2020
).
25.
B.
Nabavi
,
M.
Goodarzi
, and
A.
Khaliq Khan
, “
Investigation of secondary phases and tensile strength of nitrogen added alloy 718 weldment
,”
Int. J. Miner. Metall. Mater.
27
,
1259
1268
(
2020
).
26.
L. N.
Zhang
and
O. A.
Ojo
, “
Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy
,”
J. Alloys Compd.
829
,
154455
(
2020
).
27.
X.
You
,
Y.
Tan
,
L.
Zhao
,
Q.
You
,
Y.
Wang
,
F.
Ye
, and
J.
Li
, “
Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy
,”
J. Alloys Compd.
741
,
792
803
(
2018
).
28.
T.
Chen
,
J.
Nutter
,
J.
Hawk
, and
X.
Liu
, “
Corrosion fatigue crack growth behavior of oil-grade nickel-base alloy 718. Part 1: effect of corrosive environment
,”
Corros. Sci.
89
,
146
153
(
2014
).
29.
H. S.
Klapper
,
M.
Burns
,
N.
Molodtsov
, and
C.
Wangenheim
, “
Critical factors affecting the pitting corrosion resistance of additively manufactured nickel alloy in chloride containing environments
,”
NACE Corrosion Conference 2017, NACE-2017-9345
(
2017
).
30.
M.
Saremi
and
M.
Yeganeh
, “
Investigation of corrosion behaviour of nanostructured copper thin film produced by radio frequency sputtering
,”
Micro Nano Lett.
5
,
70
(
2010
).
31.
O. V.
Mythreyi
,
B. K.
Nagesha
, and
R.
Jayaganthan
, “
Microstructural evolution & corrosion behavior of laser–powder-bed–fused Inconel 718 subjected to surface and heat treatments
,”
J. Mater. Res. Technol.
19
,
3201
3215
(
2022
).
32.
B.
Liu
,
Y.
Ding
,
J.
Xu
,
Y.
Gao
,
C.
Chu
,
Y.
Hu
, and
D.
Chen
, “
Grain boundary engineering activated by residual stress during the laser powder bed fusion of Inconel 718 and the electrochemical corrosion performance
,”
Mater. Charact.
204
,
113160
(
2023
).
33.
M.
Yeganeh
,
M. H.
Rezvani
, and
S. M.
Laribaghal
, “
Electrochemical behavior of additively manufactured 316 L stainless steel in H2SO4 solution containing methionine as an amino acid
,”
Colloids Surf. A
627
,
127120
(
2021
).
34.
F.
Liu
,
F.
Lyu
,
F.
Liu
,
X.
Lin
, and
C.
Huang
, “
Laves phase control of Inconel 718 superalloy fabricated by laser direct energy deposition via δ aging and solution treatment
,”
J. Mater. Res. Technol.
9
,
9753
9765
(
2020
).
35.
S.
Zhang
,
L.
Wang
,
X.
Lin
,
H.
Yang
, and
W.
Huang
, “
The formation and dissolution mechanisms of laves phase in Inconel 718 fabricated by selective laser melting compared to directed energy deposition and cast
,”
Compos. Part B
239
,
109994
(
2022
).
36.
X.
Li
,
J. J.
Shi
,
C. H.
Wang
,
G. H.
Cao
,
A. M.
Russell
,
Z. J.
Zhou
,
C. P.
Li
, and
G. F.
Chen
, “
Effect of heat treatment on microstructure evolution of inconel 718 alloy fabricated by selective laser melting
,”
J. Alloys Compd.
764
,
639
649
(
2018
).
37.
O. V.
Mythreyi
,
A.
Raja
,
B. K.
Nagesha
, and
R.
Jayaganthan
, “
Corrosion study of selective laser melted in718 alloy upon post heat treatment and shot peening
,”
Metals (Basel)
10
,
1562
(
2020
).
38.
M.
Yeganeh
,
Z.
Shahryari
,
A. T.
Khanjar
,
Z.
Hajizadeh
, and
F.
Shabani
, “
Inclusions and segregations in the selective laser-melted alloys: A review
,”
Coating
13
,
1295
(
2023
).
39.
S.
Soleimani
,
M.
Yeganeh
, and
S. M.
Lari Baghal
, “
Electrochemical behavior of laser powder bed fusion fabricated 316L stainless steel in a nitric acid solution
,”
J. Laser Appl.
34
,
042036
(
2022
).
40.
K.
Saeidi
,
X.
Gao
,
Y.
Zhong
, and
Z. J.
Shen
, “
Hardened austenite steel with columnar sub-grain structure formed by laser melting
,”
Mater. Sci. Eng. A
625
,
221
229
(
2015
).
41.
E.
Liverani
and
A. H. A.
Lutey
, “
The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM)
,”
Int. J. Adv. Manuf. Technol.
107
,
109
122
(
2020
).
42.
S.
Yan
,
Y.
Wang
,
Q.
Wang
, and
C.
Zhang
, “
Enhancing mechanical properties of the spark plasma sintered Inconel 718 alloy by controlling the nano-scale precipitations
,”
Materials (Basel)
12
,
3336
(
2019
).
43.
K.
Gruber
,
R.
Dziedzic
,
B.
Madejski
, and
M.
Malicki
, “
Impact of high temperature stress relieving on final properties of Inconel 718 processed by laser powder bed fusion
,”
Mater. Sci. Eng. A
813
,
141111
(
2021
).
44.
T.
Artaza
,
T.
Bhujangrao
,
F.
Veiga
, and
A.
Lamikiz
, “
Influence of heat input on the formation of laves (PAW) additive manufacturing of Inconel 718
,”
Metals (Basel)
10
,
771
(
2020
).
45.
C.
Escrivà-Cerdán
,
E.
Blasco-Tamarit
,
D. M.
García-García
, and
J.
García-Antón
, “
Effect of temperature on passive film formation of UNS N08031 Cr – Ni alloy in phosphoric acid contaminated with different aggressive anions
,”
Electrochim. Acta
111
,
552
561
(
2013
).
46.
M.
Saremi
and
M.
Yeganeh
, “
Corrosion behavior of copper thin films deposited by EB-PVD technique on thermally grown silicon dioxide and glass in hydrochloric acid media
,”
Mater. Chem. Phys.
123
,
456
462
(
2010
).
47.
Z.
Shahryari
,
K.
Gheisari
,
M.
Yeganeh
, and
B.
Ramezanzadeh
, “
Corrosion mitigation ability of differently synthesized polypyrrole (PPy-FeCl3 & PPy-APS) conductive polymers modified with Na2MoO4 on mild steel in 3.5% NaCl solution: Comparative study and optimization
,”
Corros. Sci.
193
,
109894
(
2021
).
48.
T.
Chen
,
H.
John
,
J.
Xu
,
Q.
Lu
,
J.
Hawk
, and
X.
Liu
, “
Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: effect of machine hammer peening
,”
Corros. Sci.
77
,
230
245
(
2013
).
49.
M.
Yeganeh
and
A.
Keyvani
, “
The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings
,”
Prog. Org. Coat.
90
,
296
303
(
2016
).
50.
M.
Amirjan
,
M.
Bozorg
, and
H.
Sakiani
, “
Investigation of microstructure and corrosion behavior of IN718 superalloy fabricated by selective laser melting
,”
Mater. Chem. Phys.
263
,
124368
(
2021
).
51.
M.
Salehi
,
M.
Yeganeh
,
R. B.
Heidari
, and
M.
Eskandari
, “
Comparison of the microstructure, corrosion resistance, and hardness of 321 and 310 s austenitic stainless steels after thermo-mechanical processing
,”
Mater. Today Commun.
31
,
103638
(
2022
).
52.
Z.
Jin
,
F.
An
,
S.
Li
,
Z.
Cui
,
W.
Lu
, and
S.
Lu
, “
Effect of annealing temperature on the microstructure evolution and corrosion behavior of carbon-interstitial FeMnCoCrNi high-entropy alloys
,”
Corros. Sci.
228
,
111813
(
2024
).
53.
E.
Alekseeva
,
A.
Karasev
,
P. G.
Jonsson
, and
A.
Alkhimenko
, “
Effect of inclusions on the corrosion properties of the nickel-based alloys 718 and EP718
,”
Metals (Basel)
10
,
1177
(
2020
).
54.
E.
Blasco-Tamarit
,
A.
Igual-Muñoz
,
J. G.
Antón
, and
D. G.-G.
Departamento
, “
Effect of temperature on the corrosion resistance and pitting behaviour of alloy 31 in LiBr solutions
,”
Corros. Sci.
50
,
1848
1857
(
2008
).
55.
M. A.
Amin
,
N.
El-Bagoury
,
M.
Saracoglu
, and
M.
Ramadan
, “
Electrochemical and corrosion behavior of cast re-containing inconel 718 alloys in sulphuric acid solutions and the effect of
,”
Int. J. Electrochem. Sci.
9
,
5352
5374
(
2014
).
56.
S.
Esmailzadeh
,
M.
Aliofkhazraei
, and
H.
Sarlak
, “
Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review
,”
Prot. Met. Phys. Chem. Surf.
54
,
976
989
(
2018
).
57.
L.
Yang
,
Techniques for Corrosion Monitoring
(
Woodhead Publishing
, Cambridge, UK,
2008
).
You do not currently have access to this content.