Silver nanoparticle (Ag NP) pastes become a potential die-attachment material with the increased electronic power density. However, the weakness of bonding interface between sintered Ag NPs and bare Cu substrate limits the applications of the Ag NPs paste, thereby reducing the shear strength of the sintered joint. In this work, ultrafast laser processing is utilized to enhance the bonding strength of the sintered Ag joint by fabricating a microstructure interface. The microstructure dimensions are tunable by controlling laser parameters, and then high-strength joints could be obtained. Different substrate microstructures were constructed, and the enhanced bonding mechanism was analyzed by characterizing the cross section and fracture surface morphologies of joints. The ultrafast laser processing could increase the surface energy of Cu substrates to form a more reliable connection with Ag NPs and more energy required for crack extension with the increasing connection area, thereby resulting in a significant improvement in the shear strength of the Ag NP joints. The patterned microstructures on the Cu substrate using this technique showed improved surface energy and increased number of connection areas on the substrate, showing potential for the use in third-generation semiconductors for highly reliable packaging.

1.
Q.
Jia
,
G.
Zou
,
H.
Zhang
,
Z.
Deng
,
W.
Wang
,
L.
Liu
,
L.
Ma
, and
F.
Guo
, “
Supersaturated Ag-Cu nanoalloy film for high reliability power electronic packaging
,”
Appl. Surf. Sci.
612
,
155663
(
2023
).
2.
E. B.
Choi
,
Y.-J.
Lee
, and
J.-H.
Lee
, “
Rapid sintering by thermo-compression in air using a paste containing bimodal-sized silver-coated copper particles and effects of particle size and surface finish type
,”
J. Alloys Compd.
897
,
163223
(
2022
).
3.
T.
Kimoto
and
Y.
Yonezawa
, “
Current status and perspectives of ultrahigh-voltage SiC power devices
,”
Mater. Sci. Semicond. Process.
78
,
43
56
(
2018
).
4.
H. S.
Chin
,
K. Y.
Cheong
, and
A. B.
Ismail
, “
A review on die attach materials for SiC-based high-temperature power devices
,”
Metall. Mater. Trans. B
41
,
824
832
(
2010
).
5.
D.
Kim
,
S.
Lee
,
C.
Chen
,
S.-J.
Lee
,
S.
Nagao
, and
K.
Suganuma
, “
Fracture mechanism of microporous Ag-sintered joint in a GaN power device with Ti/Ag and Ni/Ti/Ag metallization layer at different thermo-mechanical stresses
,”
J. Mater. Sci.
56
,
9852
9870
(
2021
).
6.
C.
Li
,
Y.
Piao
,
B.
Meng
,
Y.
Zhang
,
L.
Li
, and
F.
Zhang
, “
Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane
,”
Appl. Surf. Sci.
578
,
152028
(
2022
).
7.
J.
Yang
,
K.
Liu
,
X.
Chen
, and
D.
Shen
, “
Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors
,”
Prog. Quantum Electron.
83
,
100397
(
2022
).
8.
S.
Kim
,
S.
Park
,
D.
Kim
, and
C.
Jin
, “
Thermal diffusivity of Ag/CNT-added Ag nanocomposites prepared by spark plasma sintering
,”
Int. J. Precis. Eng. Manuf.
21
,
1357
1362
(
2020
).
9.
K.
Li
,
Y.
Liu
,
J.
Zhang
, and
N.
Xiao
, “
A low cost multi-shapes designed sintering composite paste: A strengthening method of sintered interconnect for die attach in high temperature applications
,”
Mater. Lett.
315
,
131884
(
2022
).
10.
W.
Liu
,
Y.
Wang
,
Z.
Zheng
,
C.
Wang
,
R.
An
,
Y.
Tian
,
L.
Kong
, and
R.
Xu
, “
Laser sintering mechanism and shear performance of Cu–Ag–Cu joints with mixed bimodal size Ag nanoparticles
,”
J. Mater. Sci.: Mater. Electron.
30
,
7787
7793
(
2019
).
11.
M.-L.
Li
,
L.
Zhang
,
N.
Jiang
,
L.
Zhang
, and
S.-J.
Zhong
, “
Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review
,”
Mater. Des.
197
,
109224
(
2021
).
12.
G.
Qu
,
Z.
Deng
,
W.
Guo
,
Z.
Peng
,
Q.
Jia
,
E.
Deng
, and
H.
Zhang
, “
The heat-dissipation sintered interface of power chip and heat sink and its high-temperature thermal analysis
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
13
,
816
822
(
2023
).
13.
H.
Zhang
,
Q.
Jia
,
C.
Yin
,
Z.
Deng
,
W.
Guo
, and
Z.
Wan
, “
Novel SiC-based power device bonding materials of nano foam sheet and its characteristic and properties
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
13
,
897
905
(
2023
).
14.
C.
Yin
,
K.
Wumaeraili
,
Y.
Zhang
,
Y.
Wu
,
J.
Zhang
,
W.
Guo
,
Y.
Zhu
,
X.
Song
,
Q.
Jia
, and
H.
Zhang
, “
Novel Ag-Cu foam sheet with multi-layer composite structure for high performance joining of SiC power chips
,”
Mater. Charact.
209
,
113696
(
2024
).
15.
H.
Zhang
,
S.
He
,
G.
Qu
, and
W.
Guo
, “
Improved thermal conductivity and reliability through graphene reinforced nanopaste for power devices in new energy vehicles
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
14
,
52
60
(
2024
).
16.
E.
Ide
,
S.
Angata
,
A.
Hirose
, and
K. F.
Kobayashi
, “
Metal-metal bonding process using Ag metallo-organic nanoparticles
,”
Acta Mater.
53
,
2385
2393
(
2005
).
17.
H.
Alarifi
,
A.
Hu
,
M.
Yavuz
, and
Y. N.
Zhou
, “
Silver nanoparticle paste for low-temperature bonding of copper
,”
J. Electron. Mater.
40
,
1394
1402
(
2011
).
18.
S.
Li
,
Y.
Liu
,
H.
Ye
,
X.
Liu
,
F.
Sun
,
X.
Fan
, and
G.
Zhang
, “
Sintering mechanism of Ag nanoparticle-nanoflake: A molecular dynamics simulation
,”
J. Mater. Res. Technol.
16
,
640
655
(
2022
).
19.
A.
Hussain
,
H. L.
Lee
, and
S. J.
Moon
, “
Sintering of silver nanoparticle structures and the pursuit of minimum resistivity
,”
Mater. Today Commun.
34
,
105159
(
2023
).
20.
C.-J.
Du
,
X.
Li
,
Y.-H.
Mei
, and
G.-Q.
Lu
, “
An explanation of sintered silver bonding formation on bare copper substrate in air
,”
Appl. Surf. Sci.
490
,
403
410
(
2019
).
21.
T.
Matsuda
,
S.
Yamada
,
A.
Takeuchi
,
K.
Uesugi
,
M.
Yasutake
,
T.
Sano
,
M.
Ohata
, and
A.
Hirose
, “
Fracture behavior of thermally aged Ag-Cu composite sinter joint through microscale tensile test coupled with nano X-ray computed tomography
,”
Mater. Des.
206
,
109818
(
2021
).
22.
C.
Chen
,
K.
Suganuma
,
T.
Iwashige
,
K.
Sugiura
, and
K.
Tsuruta
, “
High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates
,”
J. Mater. Sci.: Mater. Electron.
29
,
1785
1797
(
2018
).
23.
S.
Zabihzadeh
,
S.
Van Petegem
,
L. I.
Duarte
,
R.
Mokso
,
A.
Cervellino
, and
H.
Van Swygenhoven
, “
Deformation behavior of sintered nanocrystalline silver layers
,”
Acta Mater.
97
,
116
123
(
2015
).
24.
Z.
Chen
,
J.
Yang
,
H.
Liu
,
Y.
Zhao
, and
R.
Pan
, “
A short review on functionalized metallic surfaces by ultrafast laser micromachining
,”
Int. J. Adv. Manuf. Technol.
119
,
6919
6948
(
2022
).
25.
B.
Yang
,
H.
Li
,
H.
Sun
,
W.
Xu
,
H.
Xia
,
X.
Su
,
B.
Chen
,
X.
Song
, and
C.
Tan
, “
Towards enhanced mechanical performance of Al/steel welded-brazed joints via laser surface texturing modification
,”
J. Mater. Res. Technol.
27
,
5278
5290
(
2023
).
26.
D.
Zhang
,
Z.
Wei
,
K.
Wang
, and
X.
Li
, “
Brazing of Al2O3-6061 aluminum alloy based on femtosecond laser surface groove structure
,”
Ceram. Int.
48
,
36953
36960
(
2022
).
27.
L.
Zhang
,
H.
Pan
,
Z.
Sun
,
J.
Ma
,
Q.
Chang
, and
B.
Zhang
, “
Joining of p-type skutterudite and Cu electrodes with a laser patterned interfacial structure
,”
Mater. Lett.
347
,
134502
(
2023
).
28.
P.
Cao
,
C.
Wang
,
N.
Lin
,
S.
Li
,
X.
Zhang
, and
J. A.
Duan
, “
Bonding strength enhancement of low temperature sintered SiC power module by femtosecond laser induced micro/nanostructures
,”
Mater. Sci. Semicond. Process.
148
,
106802
(
2022
).
29.
C.
Wang
,
S.
Man
,
Z.
Luo
,
Y.
Zheng
,
D.
Guo
,
K.
Ding
,
B.
Wu
, and
J. a.
Duan
, “
Low-temperature copper bonding strategy via hierarchical microscale taper array fabricated by femtosecond laser
,”
Laser Phys. Lett.
17
,
036002
(
2020
).
30.
A. Y.
Vorobyev
and
C.
Guo
, “
Direct femtosecond laser surface nano/microstructuring and its applications
,”
Laser Photonics Rev.
7
,
385
407
(
2013
).
31.
Y.
Zhang
,
G.
Zou
,
L.
Liu
,
A.
Wu
,
Z.
Sun
, and
Y. N.
Zhou
, “
Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure
,”
Mater. Sci. Eng. A
662
,
178
184
(
2016
).
32.
K.
Kiełbasiński
,
J.
Szałapak
,
M.
Jakubowska
,
A.
Młożniak
,
E.
Zwierkowska
,
J.
Krzemiński
, and
M.
Teodorczyk
, “
Influence of nanoparticles content in silver paste on mechanical and electrical properties of LTJT joints
,”
Adv. Powder Technol.
26
,
907
913
(
2015
).
33.
J.
Fan
,
G.
Li
,
K.
Rajavel
,
P.
Zhu
,
R.
Sun
, and
C.-P.
Wong
, “
Synergistic size and shape effect of dendritic silver nanostructures for low-temperature sintering of paste as die attach materials
,”
J. Mater. Sci.: Mater. Electron.
32
,
323
336
(
2021
).
34.
Y.
Liu
,
C.
Chen
,
D.
Kim
,
Z.
Zhang
,
X.
Long
, and
K.
Suganuma
, “
Modified Ni/Pd/Au-finished DBA substrate for deformation-resistant Ag-Au joint during long-term thermal shock test
,”
J. Mater. Sci.: Mater. Electron.
32
,
20384
20393
(
2021
).
35.
C.
Wang
,
G.
Li
,
L.
Xu
,
J.
Li
,
D.
Zhang
,
T.
Zhao
,
R.
Sun
, and
P.
Zhu
, “
Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism
,”
ACS Appl. Electron. Mater.
3
,
5365
5373
(
2021
).
36.
H.
Zhang
,
W.
Wang
,
H.
Bai
,
G.
Zou
,
L.
Liu
,
P.
Peng
, and
W.
Guo
, “
Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications
,”
J. Alloys Compd.
774
,
487
494
(
2019
).
37.
W.
Guo
,
Z.
Zeng
,
X.
Zhang
,
P.
Peng
, and
S.
Tang
, “
Low-temperature sintering bonding using silver nanoparticle paste for electronics packaging
,”
J. Nanomater.
2015
,
897142
(
2015
).
38.
J.
Yan
,
D.
Zhang
,
G.
Zou
,
L.
Liu
,
H.
Bai
,
A.
Wu
, and
Y. N.
Zhou
, “
Sintering bonding process with Ag nanoparticle paste and joint properties in high temperature environment
,”
J. Nanomater.
2016
,
5284048
(
2016
).
39.
G.
Yang
,
E. L.
Lee
,
K.
Yang
,
F.
Wu
,
L.
Zhou
,
L.
Ding
,
K.
Li
, and
X.
Li
, “
Pressure sintering of micro-silver joints in SiC power devices: Optimization of processing parameters and FEM analysis
,”
J. Electron. Mater.
53
,
1313
1332
(
2023
).
40.
D.
Jiang
,
J.
Long
,
M.
Cai
,
Y.
Lin
,
P.
Fan
,
H.
Zhang
, and
M.
Zhong
, “
Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining
,”
Mater. Des.
114
,
185
193
(
2017
).
You do not currently have access to this content.