A Michelson interferometer is commonly used for evaluating the morphology of a cell. However, the interference imaging with reference and object beams is easily affected by external vibrations and environmental disturbances, leading to unstable interference patterns. In this paper, the three-dimensional surface morphology of the biological cell is evaluated by a new quantitative phase imaging method, which couples Michelson-like lateral shear interferometric microscopy with self-referencing numerical phase calibration. The Michelson-like lateral shear interferometric microscopy is constructed by replacing the two plane mirrors of the traditional Michelson interferometer with two common right-angle prisms and generates interference fringe patterns. The lateral shear is created and freely adjustable by simply translating/or rotating one right-angle prism. To calculate the phase information of the biological cells quantitatively, the classical Fourier transform method is used to process the recorded interferogram, and then the self-referencing numerical phase calibration method is utilized for acquiring accurate phase information. Successfully achieving quantitative phase imaging of a cell verifies the feasibility and practicability of the proposed method.

1.
F.
Zernike
, “
Phase contrast, a new method for the microscopic observation of transparent objects
,”
Physica
9
,
686
698
(
1942
).
2.
F.
Zernike
, “
Phase contrast, a new method for the microscopic observation of transparent objects part II
,”
Physica
9
,
974
986
(
1942
).
3.
F.
Zernike
, “
How I discovered phase contrast
,”
Science
121
,
345
349
(
1955
).
4.
Gabriel Popescu
,
Quantitative Phase Imaging of Cells and Tissues
(
McGraw-Hill
, New York,
2011
).
5.
KyeoReh
Lee
,
Kyoohyun
Kim
,
Jaehwang
Jung
,
JiHan
Heo
,
Sangyeon
Cho
,
Sangyun
Lee
,
Gyuyoung
Chang
,
YoungJu
Jo
,
Hyunjoo
Park
, and
YongKeun
Park
, “
Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications
,”
Sensors
13
,
4170
4191
(
2013
).
6.
Pierre
Marquet
,
Christian
Depeursinge
, and
Pierre J.
Magistretti
, “
Review of quantitative phase-digital holographic microscopy: Promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders
,”
Neurophotonics
1
,
020901
(
2014
).
7.
YongKeun
Park
,
Christian
Depeursinge
, and
Gabriel
Popescu
, “
Quantitative phase imaging in biomedicine
,”
Nat. Photonics
12
,
578
589
(
2018
).
8.
Chenfei
Hu
and
Gabriel
Popescu
, “
Quantitative phase imaging (QPI) in neuroscience
,”
IEEE J. Sel. Top. Quantum Electron.
25
,
6801309
(
2019
).
9.
YoungJu
Jo
,
Hyungjoo
Cho
,
Sang Yun
Lee
,
Gunho
Choi
,
Geon
Kim
,
Hyun-seok
Min
, and
YongKeun
Park
, “
Quantitative phase imaging and artificial intelligence: a review
,”
IEEE J. Sel. Top. Quantum Electron.
25
,
6800914
(
2019
).
10.
Teresa
Cacace
,
Vittorio
Bianco
, and
Pietro
Ferraro
, “
Quantitative phase imaging trends in biomedical applications
,”
Opt. Lasers Eng.
135
,
106188
(
2020
).
11.
Thang L.
Nguyen
,
Soorya
Pradeep
,
Robert L.
Judson-Torres
,
Jason
Reed
,
Michael A.
Teitell
, and
Thomas A.
Zangle
, “
Quantitative phase imaging: Recent advances and expanding potential in biomedicine
,”
ACS Nano
16
,
11516
11544
(
2022
).
12.
Daniele
Pirone
,
Vittorio
Bianco
,
Lisa
Miccio
,
Pasquale
Memmolo
,
Demetri
Psaltis
, and
Pietro
Ferraro
, “
Beyond fluorescence: Advances in computational label-free full specificity in 3D quantitative phase microscopy
,”
Curr. Opin. Biotechnol.
85
,
103054
(
2024
).
13.
V.
Mico
,
J.
Zheng
,
J.
Garcia
., “
Resolution enhancement in quantitative phase microscopy
,”
Adv. Opt. Photonics
11
,
135
214
(
2019
).
14.
R.
Guo
and
F.
Wang
, “
Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective
,”
Opt. Express
25
,
24512
24520
(
2017
).
15.
S.
Bhatt
,
A.
Butola
,
S. R.
Kanade
., “
High-resolution single-shot phase-shifting interference microscopy using deep neural network for quantitative phase imaging of biological samples
,”
J. Biophotonics
14
,
e202000473
(
2021
).
16.
J.
Zheng
,
P.
Gao
, and
X.
Shao
, “
Aberration compensation and resolution improvement of focus modulation microscopy
,”
J. Opt.
19
,
015302
(
2017
).
17.
J.
Katz
and
J.
Sheng
, “
Applications of holography in fluid mechanics and particle dynamics
,”
Annu. Rev. Fluid Mech.
42
,
531
555
(
2010
).
18.
V.
Marx
, “
Microscopy: Hello, adaptive optics
,”
Nat. Methods
14
,
1133
1136
(
2017
).
19.
Jiwei
Zhang
,
Siqing
Dai
,
Chaojie
Ma
,
Teli
Xi
,
Jianglei
Di
, and
Jianlin
Zhao
, “
A review of common-path off-axis digital holography: Towards high stable optical instrument manufacturing
,”
Light: Adv. Manuf.
2
,
333
349
(
2021
).
20.
A.
Anand
,
V.
Chhaniwal
, and
B.
Javidi
, “
Tutorial: Common path self-referencing digital holographic microscopy
,”
APL Photon.
3
,
071101
(
2018
).
21.
Björn
Kemper
,
Angelika
Vollmer
, Gert von Bally, Christina E. Rommel, and Jürgen Schnekenburger, “
Simplified approach for quantitative digital holographic phase contrast imaging of living cells
,”
Proc. SPIE
16
,
026014
(
2011
).
22.
Natan T.
Shaked
, “
Quantitative phase microscopy of biological samples using a portable interferometer
,”
Opt. Lett.
37
,
2016
2018
(
2012
).
23.
Pinhas
Girshovitz
and
Natan T.
Shaked
, “
Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy
,”
Opt. Express
21
,
5701
5714
(
2013
).
24.
Robin
Schubert
,
Angelika
Vollmer
,
Steffi
Ketelhut
, and
Björn
Kemper
, “
Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens
,”
Biomed. Opt. Express
5
,
4213
4222
(
2014
).
25.
Hongyi
Bai
,
Mingguang
Shan
,
Zhi
Zhong
,
Lili
Guo
, and
Yabin
Zhang
, “
Common path interferometer based on the modified michelson configuration using a reflective grating
,”
Opt. Lasers Eng.
75
,
1
4
(
2015
).
26.
Darina
Roitshtain
,
Nir A.
Turko
,
Bahram
Javidi
, and
Natan T.
Shaked
, “
Flipping interferometry and its application for quantitative phase microscopy in a micro-channel
,”
Opt. Lett.
41
,
2354
2357
(
2016
).
27.
Junwei
Min
,
Baoli
Yao
,
Veselina
Trendafilova
,
Steffi
Ketelhut
,
Lena
Kastl
,
Burkhard
Greve
, and
Björn
Kemper
, “
Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy
,”
J. Biophotonics
12
,
e201900085
(
2019
).
28.
Deyan
Xu
.,
Shear Interferometry and Its Progress
(
Science
, Beijing,
2017
) (in Chinese).
29.
Amardeep S.G.
Singh
,
Arun
Anand
,
Rainer A.
Leitgeb
, and
Bahram
Javidi
, “
Lateral shearing digital holographic imaging of small biological specimens
,”
Opt. Express
20
,
23617
23622
(
2012
).
30.
Daniel
Malacara
,
Optical Shop Testing
, 3rd ed. (
John Wiley & Sons, Inc.
, Hoboken, NJ,
2007
).
31.
C.
Roddier
,
F.
Roddier
, and
J.
Demarcq
, “
Compact rotational shearing interferometer for astronomical applications
,”
Opt. Eng.
28
,
66
70
(
1989
).
32.
Young-Sik
Ghim
,
Hyug-Gyo
Rhee
,
Angela
Davies
,
Ho-Soon
Yang
, and
Yun-Woo
Lee
, “
3D surface mapping of freeform optics using wavelength scanning lateral shearing interferometry
,”
Opt. Express
22
,
5098
5105
(
2014
).
33.
K.
Watanabe
and
T.
Nomura
, “
Recording spatially incoherent Fourier hologram using dual channel rotational shearing interferometer
,”
Appl. Opt.
54
,
A18
A22
(
2015
).
34.
M. V. R. K.
Murty
, “
The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source
,”
Appl. Opt.
3
,
531
534
(
1964
).
35.
Mitsuo
Takeda
,
Hideki
Ina
, and
Seiji
Kobayashi
, “
Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
,”
J. Opt. Soc. Am.
72
,
156
160
(
1982
).
36.
Thomas
Kreis
, “
Digital holographic interference-phase measurement using the Fourier-transform method
,”
J. Opt. Soc. Am. A
3
,
847
855
(
1986
).
37.
Pietro
Ferraro
,
Sergio
De Nicola
,
Andrea
Finizio
,
Giuseppe
Coppola
,
Simonetta
Grilli
,
Carlo
Magro
, and
Giovanni
Pierattini
, “
Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging
,”
Appl. Opt.
42
,
1938
1946
(
2003
).
38.
G.
Coppola
,
G.
Di Caprio
,
M.
Gioffré
,
R.
Puglisi
,
D.
Balduzzi
,
A.
Galli
,
L.
Miccio
,
M.
Paturzo
,
S.
Grilli
,
A.
Finizio
, and
P.
Ferraro
, “
Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction
,”
Opt. Lett.
35
,
3390
3392
(
2010
).
39.
Haniel
Gabai
and
Natan T.
Shaked
, “
Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints
,”
Opt. Express
20
,
26906
26912
(
2012
).
40.
Jaeduck
Jang
,
Chae Yun
Bae
,
Je-Kyun
Park
, and
Jong Chul
Ye
, “
Self-reference quantitative phase microscopy for microfluidic devices
,”
Opt. Lett.
35
,
514
516
(
2010
).
41.
Tengfei
Sun
,
Peng
Lu
,
Zhuang
Zhuo
,
Wenhao
Zhang
, and
Jingqi
Lu
, “
Single-shot two-channel fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell
,”
Opt. Commun.
426
,
77
83
(
2018
).
42.
Kwang-Beom
Seo
,
Byung-Mok
Kim
, and
Eun-Soo
Kim
, “
Digital holographic microscopy based on a modified lateral shear interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects
,”
Nanoscale Res. Lett.
9
,
471
(
2014
).
43.
See supplementary material online for the detailed derivation process about the relationship between the shear amount s 2 and the rotation angle α.

Supplementary Material

You do not currently have access to this content.