Memristor-based logic circuits are gaining a lot of attention due to the potential for high logic density hardware and novel in-memory computing applications. Readily available methods for fabricating of memristor logic structures that are suitable for integration with conventional computer hardware are a growing need. This work presents a direct laser writing process capable of rapidly fabricating memristor logic circuits by laser irradiation of metal salt precursor solutions. Planar memristor patterns are fabricated, and their IV response is characterized. Boolean logic gates are fabricated from planar memristor pairs that exhibit low programming voltages and rapid switching. Cu/Cu2O/Cu and Ag/Cu2O/Cu memristors are also fabricated in crossbar arrays, showing the ability to be programmed to multiple resistance states through ultrashort voltage pulses. The devices also show the potential to have high endurance and nonvolatile resistance state retention.

1.
L.
Chua
, “
If it’s pinched it’s a memristor
,”
Semicond. Sci. Technol.
29
,
104001
(
2014
).
2.
L.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
3.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
4.
N.
Xu
,
L. F.
Liu
,
X.
Sun
et al, “
Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention
,”
Semicond. Sci. Technol.
23
,
075019
(
2008
).
5.
G.
Papandroulidakis
,
A.
Serb
,
A.
Khiat
,
G. V.
Merrett
, and
T.
Prodromakis
, “
Practical implementation of memristor-based threshold logic gates
,”
IEEE Trans. Circuits Syst. I. Regul. Pap.
66
,
3041
3051
(
2019
).
6.
S.
Zou
,
P.
Xu
, and
M. C.
Hamilton
, “
Resistive switching characteristics in printed Cu/CuO/(AgO)/Ag memristors
,”
Electron. Lett.
49
,
829
830
(
2013
).
7.
Y.
Yu
,
M.
Xiao
,
D.
Fieser
,
W.
Zhou
, and
A.
Hu
, “
Nanoscale memristor devices: Materials, fabrication, and artificial intelligence
,”
J. Mater. Chem. C
12,
3770
3810
(
2024
).
8.
L. L.
Wei
,
D. S.
Shang
,
J. R.
Sun
,
S. B.
Lee
,
Z. G.
Sun
, and
B. G.
Shen
, “
Gradual electroforming and memristive switching in Pt/CuOx/Si/Pt systems
,”
Nanotechnology
24
,
325202
(
2013
).
9.
K.
Park
and
J.-S.
Lee
, “
Flexible resistive switching memory with a Ni/CuOx/Ni structure using an electrochemical deposition process
,”
Nanotechnology
27
,
125203
(
2016
).
10.
H.
Kim
,
M. R.
Mahmoodi
,
H.
Nili
, and
D. B.
Strukov
, “
4K-memristor analog-grade passive crossbar circuit
,”
Nat. Commun.
12
,
5198
(
2021
).
11.
B.
Gao
,
Y.
Zhou
,
Q.
Zhang
et al, “
Memristor-based analogue computing for brain-inspired sound localization with in situ training
,”
Nat. Commun.
13
,
2026
(
2022
).
12.
J.
Guo
,
Y.
Zhou
,
H.
Yuan
et al, “
Reconfigurable resistive switching devices based on individual tungsten trioxide nanowires
,”
AIP Adv.
3
,
042137
(
2013
).
13.
J.
Yuan
,
S. E.
Liu
,
A.
Shylendra
et al, “
Reconfigurable MoS2 memtransistors for continuous learning in spiking neural networks
,”
Nano Lett.
21
,
6432
6440
(
2021
).
14.
G.
Bersuker
,
D. C.
Gilmer
,
D.
Veksler
et al, “
Metal oxide resistive memory switching mechanism based on conductive filament properties
,”
J. Appl. Phys.
110
,
124518
(
2011
).
15.
K.
Fujiwara
,
T.
Nemoto
,
M. J.
Rozenberg
,
Y.
Nakamura
, and
H.
Takagi
, “
Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices
,”
Jpn. J. Appl. Phys.
47
,
6266
6271
(
2008
).
16.
C.
Nail
,
P.
Blaise
,
G.
Molas
,
M.
Bernard
,
A.
Roule
,
A.
Toffoli
,
L.
Perniola
, and
C.
Vallee
, “
Atomistic mechanisms of copper filament formation and composition in Al2O3-based conductive bridge random access memory
,”
J. Appl. Phys.
122
,
024503
(
2017
).
17.
D.
Ielmini
, “
Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling
,”
Semicond. Sci. Technol.
31
,
063002
(
2016
).
18.
D.
Ielmini
and
H.-S. P.
Wong
, “
In-memory computing with resistive switching devices
,”
Nat. Electron.
1
,
333
343
(
2018
).
19.
A.
Thomas
, “
Memristor-based neural networks
,”
J. Phys. D: Appl. Phys.
46
,
093001
(
2013
).
20.
X.
Zou
,
S.
Xu
,
X.
Chen
,
L.
Yan
, and
Y.
Han
, “
Breaking the von Neumann bottleneck: Architecture-level processing-in-memory technology
,”
Sci. China Inf. Sci.
64
,
160404
(
2021
).
21.
K.
Jean Yoon
,
J.-W.
Han
,
D.-I.
Moon
,
M. L.
Seol
,
M.
Meyyappan
,
H. J.
Kim
, and
C. S.
Hwang
, “
Electrically-generated memristor based on inkjet printed silver nanoparticles
,”
Nanoscale Adv.
1
,
2990
2998
(
2019
).
22.
H.
Liu
, “
Laser assisted ink-printing of copper oxide nanoplates for memory device
,”
Mater. Lett.
261
,
127097
127101
(
2020
).
23.
J.
Jang
,
H.
Kang
,
H. C. N.
Chakravarthula
, and
V.
Subramanian
, “
Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch
,”
Adv. Electron. Mater.
1
,
1500086
(
2015
).
24.
D.-H.
Lien
,
Z.-K.
Kao
,
T.-H.
Huang
,
Y.-C.
Liao
,
S.-C.
Lee
, and
J.-H.
He
, “
All-printed paper memory
,”
ACS Nano
8
,
7613
7619
(
2014
).
25.
J.
Liao
,
W.
Guo
, and
P.
Peng
, “
Direct laser writing of copper-graphene composites for flexible electronics
,”
Opt. Lasers Eng.
142
,
106605
(
2021
).
26.
P.
Peng
,
L.
Li
,
P.
He
,
Y.
Zhu
,
J.
Fu
,
Y.
Huang
, and
W.
Guo
, “
One-step selective laser patterning of copper/graphene flexible electrodes
,”
Nanotechnology
30
,
185301
(
2019
).
27.
J.
Jones
,
M. R.
Snowdon
,
S.
Rathod
, and
P.
Peng
, “
Direct laser writing of copper and copper oxide structures on plastic substrates for memristor devices
,”
Flex. Print. Electron.
8
,
015008
(
2023
).
28.
X.
Zhou
,
W.
Guo
,
J.
Fu
,
Y.
Zhu
,
Y.
Huang
, and
P.
Peng
, “
Laser writing of Cu/CuO integrated structure on flexible substrate for humidity sensing
,”
Appl. Surf. Sci.
494
,
684
690
(
2019
).
29.
W.
Zhou
,
Y.
Yu
,
S.
Bai
, and
A.
Hu
, “
Laser direct writing of waterproof sensors inside flexible substrates for wearable electronics
,”
Opt. Laser Technol.
135
,
106694
(
2021
).
30.
S.
Mandal
,
J.
Sinha
, and
A.
Chakraborty
, “
Design of memristor—CMOS based logic gates and logic circuits
,” in
2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC)
Shillong, India, 1–2 March 2019 (IEEE, New York,
2019
), pp.
215
220
.
31.
Q.
Xia
,
W.
Robinett
,
M. W.
Cumbie
et al, “
Memristor–CMOS hybrid integrated circuits for reconfigurable logic
,”
Nano Lett.
9
,
3640
3645
(
2009
).
32.
X.
Zhou
,
W.
Guo
,
Y.
Yao
,
R.
Peng
, and
P.
Peng
, “
Flexible nonenzymatic glucose sensing with one-step laser-fabricated Cu2O/Cu porous structure
,”
Adv. Eng. Mater.
23
,
2100192
(
2021
).
33.
M.
Xiao
,
K. P.
Musselman
,
W. W.
Duley
, and
Y. N.
Zhou
, “
Reliable and low-power multilevel resistive switching in TiO2 nanorod arrays structured with a TiOx seed layer
,”
ACS Appl. Mater. Interfaces
9
,
4808
4817
(
2017
).
34.
T.
Guo
,
J.
Ge
,
Y.
Jiao
et al, “
Intelligent matter endows reconfigurable temperature and humidity sensations for in-sensor computing
,”
Mater. Horiz.
10
,
1030
1041
(
2023
).
35.
T.
Guo
,
K.
Pan
,
Y.
Jiao
et al, “
Versatile memristor for memory and neuromorphic computing
,”
Nanoscale Horiz.
7
,
299
310
(
2022
).
36.
B.
Sun
,
Y.
Chen
,
M.
Xiao
et al, “
A unified capacitive-coupled memristive model for the nonpinched current–voltage hysteresis loop
,”
Nano Lett.
19
,
6461
6465
(
2019
).
37.
K.
Cho
,
S.-J.
Lee
, and
K.
Eshraghian
, “
Memristor-CMOS logic and digital computational components
,”
Microelectron. J.
46
,
214
220
(
2015
).
38.
E.
Linn
,
R.
Rosezin
,
S.
Tappertzhofen
,
U.
Böttger
, and
R.
Waser
, “
Beyond von Neumann—Logic operations in passive crossbar arrays alongside memory operations
,”
Nanotechnology
23
,
305205
(
2012
).
39.
O.
Kavehei
, K. Cho, S. Lee, S.-J. Kim, S. Al-Sarawi, D. Abbot, and K. Eshraghian, “
Fabrication and modeling of Ag/TiO2/ITO memristor
,” in
2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)
, Seoul, South Korea, 7-10 August 2011 (IEEE, New York,
2011
), pp.
1
4
.
40.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
, “
Memristive switching mechanism for metal/oxide/metal nanodevices
,”
Nat. Nanotechnol.
3
,
7
8
(
2008
).
41.
X.-Y.
Wang
,
P. F.
Zhou
,
J. K.
Eshraghian
,
C. Y.
Lin
,
H. H. C.
Iu
,
T. C.
Chang
, and
S. M.
Kang
, “
High-density memristor-CMOS ternary logic family
,”
IEEE Trans. Circuits Syst. Regul. Pap.
68
,
264
274
(
2021
).
42.
I.
Valov
,
R.
Waser
,
J. R.
Jameson
, and
M. N.
Kozicki
, “
Electrochemical metallization memories—Fundamentals, applications, prospects
,”
Nanotechnology
22
,
254003
(
2011
).
43.
X.
Hu
,
M. J.
Schultis
,
M.
Kramer
,
A.
Bagla
,
A.
Shetty
, and
J. S.
Friedman
, “
Overhead requirements for stateful memristor logic
,”
IEEE Trans. Circuits Syst. Regul. Pap.
66
,
263
273
(
2019
).
44.
K.
Zhang
,
Y.
Ren
,
P.
Ganesh
, and
Y.
Cao
, “
Effect of electrode and oxide properties on the filament kinetics during electroforming in metal-oxide-based memories
,”
npj Comput. Mater.
8
,
1
(
2022
).
You do not currently have access to this content.