Semi-insulating (SI) 4H-polytype of silicon carbide (SiC) is a highly desirable wide bandgap semiconductor material for various applications in challenging environments owing to its exceptional characteristics such as high melting point, remarkable thermal conductivity, strong breakdown field, and excellent resistance to oxidation. This study investigates the critical laser processing parameters to operate a pulsed UV 355 nm laser to dope high-purity (HP) SI 4H-SiC substrates with boron. The doping process parameters are examined and simulated for this UV laser doping system using a liquid precursor of boron. Boron atoms create a dopant energy level of 0.3 eV in the doped HP 4H-SiC substrates. Diffusion of boron atoms into 4H-SiC substrates modifies the hole density at 0.3 eV energy level, and causing a variation in the dynamic refraction index, and absorption index. Consequently, the optical properties of boron doped samples, namely, transmittance, reflectance, and absorbance, can be modified. The current simulation reported in this study explains the motivation of UV optical doping strategy to dope SiC substrates. A beam homogenizer was used to control the laser spot used to generate doping process. The advantage of the beam homogenizer is demonstrated by producing flat-top beams with uniform intensity over a certain area defined by the focusing lens choice. A simple theoretical model is used to select the laser processing parameters for doping SiC substrates. These modeled parameters are used to determine the efficient laser processing parameters for our doping experiments.

1.
I. A.
Salama
,
N. R.
Quick
, and
A.
Kar
, “
Laser doping of GaN for advanced optoelectronic applications
,” in
International Congress on Applications of Lasers & Electro-Optics
(
AIP Publishing
,
LIA Conference Proceedings
,
2014
), pp.
50
57
.
2.
Z.
Han
,
H.
Zhu
,
Y.
Zou
,
J.
Lu
,
F.
Zhu
, and
Q.
Ning
, “
Band gap regulation and a selective preparation method for single-walled silicon carbide nanotubes
,”
Results Phys.
38
,
105658
(
2022
).
3.
S.
Bet
,
N.
Quick
, and
A.
Kar
, “
Effect of laser field and thermal stress on diffusion in laser doping of SiC
,”
Acta Mater.
55
,
6816
6824
(
2007
).
4.
G.
Lim
and
A.
Kar
, “
Effects of laser scans on the diffusion depth and diffusivity of gallium in n-type 4H–SiC during laser doping
,”
Mater. Sci. Eng. B
176
,
660
668
(
2011
).
5.
G.
Lim
, “An uncooled mid-wave infrared detector based on optical response of laser-doped silicon carbide,” Electronic Theses and Dissertations, 4593,
2014
, see https://stars.library.ucf.edu/etd/4593.
6.
Process Technology for Silicon Carbide Devices (No. 2)
, edited by
C. M.
Zetterling
(
INSPEC, The Institution of Electrical Engineering
,
London, United Kingdom
,
2002
).
7.
E. F.
Schubert
,
Light-Emitting Diodes
(
Cambridge University Press
,
Cambridge
,
2003
).
8.
Q.
Zhang
,
F.
Zhang
,
X.
Liu
,
Z.
Yue
,
X.
Chen
, and
Z.
Wan
, “
Doping of laser-induced graphene and its applications
,”
Adv. Mater. Technol.
8
,
2300244
(
2023
).
9.
S.
Bet
, “Laser enhanced doping for silicon carbide white light emitting diodes,” Electronic theses and dissertations, 3680,
2008
, see https://stars.library.ucf.edu/etd/3680.
10.
I. A.
Salama
,
N. R.
Quick
, and
A.
Kar
, “
Laser microprocessing of wide bandgap materials
,”
Proc. SPIE
4831
,
549
554
(
2003
).
11.
A. V.
Suvorov
,
D. A.
Plotkin
,
V. N.
Makarov
, and
V. N.
Svetlov
, “
Aluminum ion implantation in silicon carbide at high temperature of target
,”
Mater. Res. Soc. Symp. Proc.
279
,
415
420
(
1993
).
12.
O.
Eryu
,
Y.
Okuyama
,
K.
Nakashima
,
T.
Nakata
, and
M.
Watanabe
, “
Formation of a p-n junction in silicon carbide by aluminium doping at room temperature using a pulsed laser doping method
,”
Appl. Phys. Lett.
67
,
2052
2053
(
1995
).
13.
A.
Ogane
,
K.
Hirata
,
K.
Horiuchi
,
Y.
Nishihara
,
Y.
Takahashi
,
A.
Kitiyanan
, and
T.
Fuyuki
, “
Laser-doping technique using ultraviolet laser for shallow doping in crystalline silicon solar cell fabrication
,”
Jpn. J. Appl. Phys.
48
,
071201
(
2009
).
14.
Y.
Bougdid
and
Z.
Sekkat
, “
Voxels optimization in 3D laser nanoprinting
,”
Sci. Rep.
10
,
1
8
(
2020
).
15.
Y.
Bougdid
,
I.
Maouli
,
A.
Rahmouni
,
K.
Mochizuki
,
I.
Bennani
,
M.
Halim
, and
Z.
Sekkat
, “
Systematic λ/21 resolution achieved in nanofabrication by two-photon-absorption induced polymerization
,”
J. Micromech. Microeng.
29
,
035018
(
2019
).
16.
D.
Feng
,
Z.
Qin
,
Q.
Ren
,
S.
Sun
,
Q.
Xia
,
H.
Ru
,
W.
Wang
, and
C.
Zhang
, “
Occurrence forms of major impurity elements in silicon carbide
,”
Ceram. Int.
48
,
205
211
(
2022
).
17.
R.
Olshansky
, “
Propagation in glass optical waveguides
,”
Rev. Mod. Phys.
51
,
341
(
1979
).
18.
P.
Sutton
, “
Introduction to Fourier optics
,”
Quantum Semiclassical Opt. J. Eur Opt. Soc. B
8
,
014
(
1996
).
19.
J. W.
Goodman
,
Introduction to Fourier Optics
(McGraw-Hill Inc.,
1969
), Chap. 4, p.
86
.
20.
A.
Haghighatzadeh
and
H.
Golnabi
, “
Theoretical modeling of generation of hat-top intensity profile from Gaussian beam by means of a two-stage beam shaper
,”
Opt. Commun.
294
,
182
187
(
2013
).
21.
C.
Boutopoulos
,
P.
Terzis
,
I.
Zergioti
,
A. G.
Kontos
,
K.
Zekentes
,
K.
Giannakopoulos
, and
Y. S.
Raptis
, “
Laser annealing of Al implanted silicon carbide structural and optical characterization
,”
Appl. Surf. Sci.
253
,
7912
7916
(
2007
).
22.
Y.
Bougdid
,
F.
Chenard
,
J.
Sugrim
,
R.
Kumar
, and
A.
Kar
, “
CO2 laser-assisted sintering of TiO2 nanoparticles for transparent films
,”
J. Laser Appl.
35
,
012012
(
2023
).
23.
B. E.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
, 1st ed. (
Wiley
,
New York
,
1991
), p.
94
.
You do not currently have access to this content.