Traditional dissolution of geologic samples often requires a significant time investment. Here, we present an alternative method for the dissolution of geologic materials using laser-driven hydrothermal processing (LDHP). LDHP uses laser energy directed onto a submerged sample, which increases the temperature and pressure at the liquid–sample interface and drives the hydrothermal dissolution coupled with photomechanical spallation, an ablative process. This uses focused 527 nm laser energy at 40 W average power, 1 kHz pulse repetition rate, and 115 ns pulse duration. When LDHP is performed on basalt geostandards (BCR-2 and BHVO-2) using the conditions outlined, we show that LDHP does not produce significant elemental fractionation and, thus, can be considered an alternative processing method to traditional mechanical crushing and acid digestion. Additionally, it is possible using LDHP to utilize the spatially confined beam to target and selectively isolate individual phases in a rock, potentially alleviating the need for mechanical separation of inclusions that are difficult to physically isolate. Furthermore, using this outlined method of LDHP, we demonstrate full dissolution of 120 mg of obsidian in 85 minu, meaning that LDHP is a potentially very useful method when sample processing is time sensitive.

1.
R.
Bock
,
A Handbook of Decomposition Methods in Analytical Chemistry
(
Blackie
,
Glasgow
,
1979
).
2.
W. M.
Johnson
and
J. A.
Maxwell
,
Rock and Mineral Analysis
, 2nd ed. (
Wiley
,
New York
,
1981
).
3.
P. J.
Potts
,
A Handbook of Silicate Rock Analysis
(
Blackie
,
London
,
1987
).
4.
Z.
Sulcek
and
P.
Povondra
,
Methods of Decomposition in Inorganic Analysis
(
CRC Press
,
Boca Raton
,
FL
,
1989
).
5.
G. A.
Brennecka
,
L. E.
Borg
, and
M.
Wadhwa
, “
Insights into the Martian mantle: The age and isotopics of the meteorite fall Tissint
,”
Meteorit. Planet. Sci.
49
,
412
418
(
2014
).
6.
G.
Yang
, “
Laser ablation in liquids: Application in the synthesis of nanocrystals
,”
Prog. Mater. Sci.
52
,
648
698
(
2007
).
7.
H.
Zeng
,
X.
Du
,
S.
Singh
,
S.
Kulinich
,
S.
Yang
,
J.
He
, and
W.
Cai
, “
Nanomaterials via laser ablation/irradiation in liquid: A review
,”
Adv. Funct. Mater.
22
,
1333
1353
(
2012
).
8.
J.
Xiao
,
P.
Liu
,
C.
Wang
, and
G.
Yang
, “
External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly
,”
Prog. Mater. Sci.
87
,
140
220
(
2017
).
9.
D.
Zhang
,
B.
Gökce
, and
S.
Barcikowski
, “
Laser synthesis and processing of colloids: Fundamentals and applications
,”
Chem. Rev.
117
,
3990
4103
(
2017
).
10.
R.
Dingus
and
R.
Scammon
, “
Ablation of material by front surface spallation
,” in
Laser Ablation Mechanisms and Applications
, Lecture Notes in Physics, Vol. 389, edited by J. C. Miller and R. F. Haglund (Springer, New York,
1991
), p.
180
.
11.
M.
Yoshimura
and
K.
Byrappa
, “
Hydrothermal processing of materials: Past, present, and future
,”
J. Mater. Sci.
43
,
2085
2103
(
2008
).
12.
R.
Mariella
and
B.
Mills
, “
Laser-driven hydrothermal processing: A new efficient technique to effect separation of silica from other oxides for analysis
,”
Laser Phys. Lett.
15
,
106002
(
2018
).
13.
S. A.
Wilson
, “
The collection, preparation and testing of USGS reference material BCR-2
,” U.S. Geological Survey, Open File Report,
1997
.
14.
S. A.
Wilson
, “
Data compilation for USGS reference material BHVO-2, Hawaiian basalt
,” U.S. Geological Survey, Open-file Report,
1997
.
15.
R.
Mariella
,
A.
Rubenchik
,
M.
Norton
, and
G.
Donohue
, “
Laser comminution of submerged samples
,”
J. Appl. Phys.
114
,
014904
(
2013
).
16.
R.
Mariella
,
A.
Rubenchik
,
E.
Fong
,
M.
Norton
,
W.
Hollingsworth
,
J.
Clarkson
,
H.
Johnsen
, and
D. L.
Osborn
, “
Laser-driven hydrothermal process studied with excimer laser pulses
,”
J. Appl. Phys.
122
,
075104
(
2017
).
17.
S.
Menon
,
A.
Camargo
,
C.
Wu
,
R.
Mariella
, and
C.
Luhrs
, “
Characterization of particles created by laser-driven hydrothermal processing
,”
Mater. Charact.
133
,
1
9
(
2017
).
18.
J.
Wimpenny
,
N.
Marks
,
K.
Knight
,
J. M.
Rolison
,
L. E.
Borg
,
G.
Eppich
,
J.
Badro
,
F. J.
Ryerson
,
M.
Sanborn
,
M. H.
Huyskens
, and
Q. Z.
Yin
, “
Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures
,”
Geochim. Cosmochim. Acta
259
,
391
411
(
2019
).
19.
J.
Wimpenny
,
N.
Marks
,
K.
Knight
,
L. E.
Borg
,
J.
Badro
, and
F. J.
Ryerson
, “
Constraining the behavior of gallium isotopes during evaporation at extreme temperatures
,”
Geochim. Cosmochim. Acta
286
,
54
71
(
2020
).
20.
L. E.
Borg
,
W. S.
Cassata
,
J.
Wimpenny
,
A. M.
Gaffney
, and
C. K.
Shearer
, “
The formation and evolution of the Moon’s crust inferred from the Sm-Nd isotopic systematics of highlands rocks
,”
Geochim. Cosmochim. Acta
290
,
312
332
(
2020
).
21.
K.
Lodders
, “
Solar system abundances and condensation temperatures of the elements
,”
Astrophys. J.
591
,
1220
1247
(
2003
).
22.
K. P.
Jochum
,
U.
Weis
,
B.
Schwager
,
B.
Stoll
,
S. A.
Wilson
,
G. H.
Haug
,
M. O.
Andreae
, and
J.
Enzweiler
, “
Reference values following ISO guidelines for frequently requested rock reference materials
,”
Geostand. Geoanal. Res.
40
,
333
350
(
2016
).
23.
I.
Raczek
,
B.
Stoll
,
A. W.
Hofmann
, and
K. P.
Jochum
, “
High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS
,”
Geostand. Newslett.
25
,
77
86
(
2001
).
You do not currently have access to this content.