Laser direct energy deposition (DED) has some accompanying issues, such as existence of micropores, elemental segregation at grain boundaries, intergranular corrosion, etc. Therefore, the current work aims for a reduction in clad defects and enhancement in surface properties for laser direct deposition of Inconel 625 by implementing ultrasonic vibration. The acoustic streaming and cavitation effect induced by ultrasonic vibration results in the breaking of columnar grains, along with grain refinement and better elemental distribution in the matrix during the solidification process. The investigation is carried out for deposition using a 240 W Yb-fiber laser under the application of ultrasonic vibration with a variable amplitude of 6–13 μm (frequency: 33–28 kHz). A relatively higher vibration amplitude was found more efficient in converting long columnar grains into finer and uniformly distributed equiaxed grains, with a significant reduction in micropores. Further, it resulted in a shorter molten pool lifetime because of the generation of more nucleation centers, leading to better cooling. The above effects resulted in higher microhardness of the deposited layer. Further, the wear and corrosion resistance showed an improvement with the application of vibration, which may be due to the finer equiaxed grains, less porosity, and better elemental distribution at a higher vibration amplitude.

1.
G. P.
Dinda
,
A. K.
Dasgupta
, and
J.
Mazumder
, “
Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability
,”
Mater. Sci. Eng. A
509
,
98
104
(
2009
).
2.
E. M.
Zahrani
and
A. M.
Alfantazi
, “
High temperature corrosion and electrochemical behavior of Inconel 625 weld overlay in PbSO4-Pb3O4-PbCl2-CdO-ZnO molten salt medium
,”
Corros. Sci.
85
,
60
76
(
2014
).
3.
D.
Zhang
,
W.
Wang
,
Y.
Guo
,
S.
Hu
,
D.
Dong
,
R.
Poprawe
,
J. H.
Schleifenbaum
, and
S.
Ziegler
, “
Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM
,”
J. Mater. Process. Technol.
268
,
25
36
(
2019
).
4.
X.
Dang
,
Y.
Li
,
K.
Chen
,
U.
Ramamurty
,
S.
Luo
,
X.
Liang
, and
W.
He
, “
Avoiding cracks in additively manufactured non-weldable directionally solidified Ni-based superalloys
,”
Addit. Manuf.
59
,
103095
(
2022
).
5.
F.
Ning
,
Y.
Hu
,
Z.
Liu
,
X.
Wang
,
Y.
Li
, and
W.
Cong
, “
Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: Microstructural and mechanical characterization
,”
J. Manuf. Sci. Eng.
140
,
061012
(
2018
).
6.
F.
Liu
,
X.
Lin
,
C.
Huang
,
M.
Song
,
G.
Yang
,
J.
Chen
, and
W.
Huang
, “
The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
,”
J. Alloys Compd.
509
,
4505
4509
(
2011
).
7.
Z.
Li
,
W.
Zhao
,
G.
Xiao
,
K.
Chen
,
H.
Zhang
,
N.
Guo
, and
L.
Xu
, “
Impact of microstructure evolution on the corrosion behaviour of the Ti–6Al–4V alloy welded joint using high-frequency pulse wave laser
,”
J. Mater. Res. Technol.
24
,
4300
14
(
2023
).
8.
M.
Fujishima
,
Y.
Oda
,
R.
Ashida
,
K.
Takezawa
, and
M.
Kondo
, “
Study on factors for pores and cladding shape in the deposition processes of Inconel 625 by the directed energy deposition (DED) method
,”
CIRP J. Manuf. Sci. Technol.
19
,
200
4
(
2017
).
9.
M. J.
Kim
and
C.
Saldana
, “
Thin wall deposition of IN625 using directed energy deposition
,”
J. Manuf. Process.
56
,
1366
73
(
2020
).
10.
S. V.
Komarov
,
M.
Kuwabara
, and
O. V.
Abramov
, “
High power ultrasonics in pyrometallurgy: Current status and recent development
,”
ISIJ Int.
45
,
1765
82
(
2005
).
11.
F.
Ning
and
W.
Cong
, “
Ultrasonic vibration-assisted (UV-A) manufacturing processes: State of the art and future perspectives
,”
J. Manuf. Process
51
,
174
190
(
2020
).
12.
C. J.
Todaro
,
M. A.
Easton
,
D.
Qiu
,
D.
Zhang
,
M. J.
Bermingham
,
E. W.
Lui
,
M.
Brandt
,
D. H.
StJohn
, and
M.
Qian
, “
Grain structure control during metal 3D printing by high-intensity ultrasound
,”
Nat. Commun.
11
,
142
(
2020
).
13.
O. V.
Abramov
, “
Action of high intensity ultrasound on solidifying metal
,”
Ultrasonics
25
,
73
82
(
1987
).
14.
W.
Cong
and
F.
Ning
, “
A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel
,”
Int. J. Mach. Tools Manuf.
121
,
61
69
(
2017
).
15.
X.
Han
,
C.
Li
,
Y.
Yang
,
X.
Gao
, and
H.
Gao
, “
Experimental research on the influence of ultrasonic vibrations on the laser cladding process of a disc laser
,”
Surf. Coat. Technol.
406
,
126750
(
2021
).
16.
L.
Zhu
,
Z.
Yang
,
B.
Xin
,
S.
Wang
,
G.
Meng
,
J.
Ning
, and
P.
Xue
, “
Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718
,”
Surf. Coat. Technol.
410
,
126964
(
2021
).
17.
H.
Wang
,
Y.
Hu
,
F.
Ning
, and
W.
Cong
, “
Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: Effects of ultrasonic frequency on microstructural and mechanical properties
,”
J. Mater. Process. Technol.
276
,
116395
(
2020
).
18.
Z. C.
Liu
,
F. D.
Ning
,
W. L.
Cong
,
Q. H.
Jiang
,
T.
Li
,
H. C.
Zhang
, and
Y. G.
Zhou
, “
Energy consumption and saving analysis for laser engineered net shaping of metal powders
,”
Energies
9
,
763
774
(
2016
).
19.
H.
Xiao
,
P.
Xie
,
M.
Cheng
, and
L.
Song
, “
Enhancing mechanical properties of quasi-continuous-wave laser additive manufactured Inconel 718 through controlling the niobium-rich precipitates
,”
Addit. Manuf.
34
,
101278
(
2020
).
20.
G.
Muvvala
,
D. P.
Karmakar
, and
A. K.
Nath
, “
Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy
,”
Opt. Lasers Eng.
88
,
139
152
(
2017
).
21.
G.
Muvvala
,
D. P.
Karmakar
, and
A. K.
Nath
, “
Online assessment of TiC decomposition in laser cladding of metal matrix composite coating
,”
Mater. Des.
121
,
310
320
(
2017
).
22.
A. M.
Nair
,
G.
Muvvala
, and
A. K.
Nath
, “
A study on in-situ synthesis of TiCN metal matrix composite coating on Ti-6Al-4V by laser surface alloying process
,”
J. Alloys Compd.
810
,
151901
(
2019
).
23.
S.
Bhatnagar
,
H. S. R.
Magham
,
S.
Mullick
, and
G.
Muvvala
, “
Evaluation of microstructure and thermal history for TiC/nconel 625 MMC deposition through pre-placed laser cladding method with and without the application of ultrasonic vibration
,”
CIRP J. Manuf. Sci. Technol.
41
,
453
464
(
2023
).
24.
S.
Gao
,
O. P.
Bodunde
,
M.
Qin
,
W. H.
Liao
, and
P.
Guo
, “
Effects of ultrasonic vibration on microstructures and thermal properties of nickel-titanium shape memory alloy fabricated by directed energy deposition
,”
Manuf Lett.
34
,
16
9
(
2022
).
25.
M.
Zhang
,
G. L.
Zhao
,
X. H.
Wang
,
S. S.
Liu
, and
W. L.
Ying
, “
Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing
,”
Surf. Coat. Technol.
403
,
126445
(
2020
).
26.
Z.
Yang
,
L.
Zhu
,
S.
Wang
,
J.
Ning
,
Y.
Dun
,
G.
Meng
,
P.
Xue
,
P.
Xu
, and
B.
Xin
, “
Effects of ultrasound on multilayer forming mechanism of Inconel 718 in directed energy deposition
,”
Addit Manuf.
48
,
102462
(
2021
).
27.
H.
Puga
,
S.
Costa
,
J.
Barbosa
,
S.
Ribeiro
, and
M.
Prokic
, “
Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy
,”
J. Mater. Process. Technol.
211
,
1729
1735
(
2011
).
28.
D.
Zhang
,
Y.
Li
,
H.
Wang
, and
W.
Cong
, “
Ultrasonic vibration-assisted laser directed energy deposition in-situ synthesis of NiTi alloys: Effects on microstructure and mechanical properties
,”
J. Manuf. Process.
1
,
328
339
(
2020
).
29.
R.
Seede
,
A.
Mostafa
,
V.
Brailovski
,
M.
Jahazi
, and
M.
Medraj
, “
Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: Structure, texture, and phases
,”
J. Manuf. Mater. Process.
2
,
30
(
2018
).
30.
J.
Lambarri
,
J.
Leunda
,
V. G.
Navas
,
C.
Soriano
, and
C.
Sanz
, “
Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components
,”
Opt. Lasers Eng.
51
,
813
821
(
2013
).
31.
X.
Yan
,
S.
Gao
,
C.
Chang
,
J.
Huang
,
K.
Khanlari
,
D.
Dong
,
W.
Ma
,
N.
Fenineche
,
H.
Liao
, and
M.
Liu
, “
Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625
,”
J. Mater. Process. Technol.
288
,
116878
(
2021
).
32.
J. J.
Ryu
,
S.
Shrestha
,
G.
Manogharan
, and
J. K.
Jung
, “
Sliding contact wear damage of EBM built Ti6Al4V: Influence of process induced anisotropic microstructure
,”
Metals
8
,
131
(
2018
).
33.
A. K.
Rai
,
C. P.
Paul
,
G. K.
Mishra
,
R.
Singh
,
S. K.
Rai
, and
K. S.
Bindra
, “
Study of microstructure and wear properties of laser borided Inconel 718
,”
J. Mater. Process. Technol.
298
,
117298
(
2021
).
34.
A.
Amanov
,
R.
Karimbaev
,
C.
Li
, and
M. A.
Waha
, “
Effect of surface modification technology on mechanical properties and dry fretting wear behavior of Inconel 718 alloy fabricated by laser powder-based direct energy deposition
,”
Surf. Coat. Technol.
454
,
129175
(
2023
).
35.
D.
Du
,
A.
Dong
,
D.
Shu
,
G.
Zhu
,
B.
Sun
,
X.
Li
, and
E.
Lavernia
, “
Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting
,”
Mater. Sci. Eng. A.
760
,
469
80
(
2019
).
36.
A.
Ismail
, “
Corrosion performance of nconel 625 in high sulphate content
,”
IOP Conf. Ser. Mater. Sci. Eng.
131
,
012010
(
2016
).
37.
S. P.
Dadasaheb
,
S. E.
Gudur
,
V.
Nagallapati
,
A.
Choudhary
,
A.
Torris
, and
G.
Muvvala
, “
A study on anisotropy in wire arc additively manufactured Inconel 625 multi-layered wall and its correlation with molten pool thermal history
,”
Mater. Sci. Amp. Eng. A
840
,
142865
(
2022
).
38.
P.
Wang
,
L.
Ma
,
X.
Cheng
, and
X.
Li
, “
Effect of grain size and crystallographic orientation on the corrosion behaviors of low alloy steel
,”
J. Alloys Compd.
857
,
158258
(
2021
).
39.
E. O.
Olakanmi
,
K.
Malikongwa
,
S. T.
Nyadongo
,
S.
Hoosain
, and
S. L.
Pityana
, “
Consolidation mechanism, microstructural evolution and corrosion resistance of nconel 625 coatings
,”
Surf. Eng.
37
,
212
225
(
2021
).
40.
M. J. K.
Lodhi
,
K. M.
Deen
,
M. C.
Greenlee-Wacker
, and
W.
Haider
, “
Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications
,”
Addit. Manuf.
27
,
8
19
(
2019
).
41.
J.
Wang
,
X.
Cui
,
G.
Jin
,
Y.
Zhao
,
X.
Wen
, and
Y.
Zhang
, “
Effect of in-situ Ni interlayer on the microstructure and corrosion resistance of underwater wet 316L stainless steel laser cladding layer
,”
Surf. Coat. Technol.
458
,
129341
(
2023
).
You do not currently have access to this content.