Keeping in view the weightage of electric propulsion over chemical propulsion, materials from metals to polymers and liquid (water) have been tested as propellants in ablative laser propulsion. This emerging propulsion technique can be widely used for aerospace applications like debris removal in the range of cm, pointing micro and nano satellites, laser micro thrusters for spacecraft attitude, and orbit control. Laser propulsion can become a less expensive alternative to chemical propulsion. In this review, we compile the work done in ablative laser propulsion and different modes of propulsion along with the efficiency of different propellants. We summarize the optimized propulsive parameters with solid propellants and liquid propellants along with the efficiencies and theories of laser thrusters with optimized specific impulses. The article provides precise developments done in the field of ablative laser propulsion and deep insights into the analysis done between the different propellants used recently in ablative laser propulsion.

1.
A.
Kantrowitz
, “
Laser propulsion to earth orbit: Has its time come?
,” in
Second Beamed Space-Power Workshop
, Hampton, Virginia, July 1, 1989 (NASA,
1989
).
2.
D. T.
Tran
and
K.
Mori
, “
Unsteady motion of laser ablation plume by vortex induced by the expansion of curved shock wave
,”
Sel. Papers 31st Int. Congr. High-Speed Imaging Photonics
10328
,
103281L
(
2017
).
3.
T.
Cohen
,
J.
Lin
,
A. V.
Pakhomovt
, and
S.
Thompson
, “
Two-pulsed ablation of elementary targets for ablative laser propulsion
,”
AIAA
Paper No. 2003-4426,
2012
.
4.
W. J.
Zhou
,
Y. J.
Hong
, and
J. F.
Ye
, “
Direct measurement method of specific impulse for pulse laser ablation micropropulsion
,”
Proc. SPIE
10173
,
101730S
(
2017
).
5.
C.
Phipps
,
J.
Luke
,
D.
Funk
,
D.
Moore
,
J.
Glownia
, and
T.
Lippert
, “
Laser impulse coupling at 130 fs
,”
Appl. Surf. Sci.
252
,
4838
4844
(
2006
).
6.
S.
Choi
,
T. H.
Han
,
A. B.
Gojani
, and
J. J.
Yoh
, “
Thrust enhancement via gel-type liquid confinement of laser ablation of solid metal propellant
,”
Appl. Phys. A: Mater. Sci. Process.
98
,
147
151
(
2010
).
7.
C. R.
Phipps
, “
Advances in the application of lasers in materials science
,” in
Advances in the Application of Lasers in Materials Science
(
Springer
,
New York
,
2018
).
8.
C.
Phipps
,
J.
Luke
,
T.
Lippert
,
M.
Hauer
, and
A.
Wokaun
, “
Micropropulsion using a laser ablation jet
,”
J. Propul. Power
20
,
1000
1011
(
2004
).
9.
W. O.
Schall
, “
Orbital debris removal by laser radiation
,”
Acta Astronaut.
24
,
343
351
(
1991
).
10.
J.
Melendez
, Fabrication of an integrated PCB-MEMS dielectric sensor node for liquid characterization (2017), doi:10.13140/RG.2.2.13476.48003 (Figure 2).
11.
N. M.
Bulgakova
and
A. V.
Bulgakov
, “
Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion
,”
Appl. Phys. A: Mater. Sci. Process.
73
,
199
208
(
2001
).
12.
R.
Stoian
,
D.
Ashkenasi
,
A.
Rosenfeld
, and
E. E. B.
Campbell
, “
Coulomb explosion in ultrashort pulsed laser ablation of Al2O3
,”
Phys. Rev. B
62
,
13167
13173
(
2000
).
13.
B. J.
Garrison
and
R.
Srinivasan
, “
Laser ablation of organic polymers: Microscopic models for photochemical and thermal processes
,”
J. Appl. Phys.
57
,
2909
2914
(
1985
).
14.
A. H.
Clauer
,
B. P.
Fairand
, and
B. A.
Wilcox
, “
Laser shock hardening of weld zones in aluminum alloys
,”
Metall. Trans. A
8A
,
1871
1876
(
1977
).
15.
X.
Liu
,
D.
Du
, and
G.
Mourou
, “
Laser ablation and micromachining with ultrashort laser pulses
,”
IEEE J. Quantum Electron.
33
,
1706
1716
(
1997
).
16.
E. Y.
Loktionov
and
M. M.
Skobelev
, “
Possible utilization of space debris for laser propulsion
,”
J. Phys.: Conf. Ser.
1147
,
012074
(
2019
).
17.
J.
Qi
,
S.
Zhang
,
T.
Liang
,
K.
Xiao
,
W.
Tang
, and
Z.
Zheng
, “
Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser
,”
Plasma Sci. Technol.
20
,
035508
(
2018
).
18.
Z. Y.
Zheng
,
S. Q.
Zhang
,
T.
Liang
,
J.
Qi
,
W. C.
Tang
,
K.
Xiao
,
L.
Gao
,
H.
Gao
, and
Z. L.
Zhang
, “
Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol
,”
Chin. Phys. B
26
,
035203
(
2017
).
19.
M. R.
Ahmad
,
Y.
Jamil
,
H.
Saeed
, and
T.
Hussain
, “
A new perspective of ablative pulsed laser propulsion: Study on different morphologies of nano-structured ZnO
,”
Laser Phys. Lett.
12
,
56101
(
2015
).
20.
M. R.
Ahmad
,
Y.
Jamil
,
M. Q.
Zakaria
,
T.
Hussain
, and
R.
Ahmad
, “
Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: A novel approach
,”
Laser Phys. Lett.
12
,
76101
(
2015
).
21.
M.
Raza Ahmad
,
Y.
Jamil
,
A.
Tabasuum
, and
T.
Hussain
, “
Refinement in the structural and magnetic properties of Co0.5Ni0.5Fe2O4 and its application as laser micro-propellant using ablation confinement
,”
J. Magn. Magn. Mater.
384
,
302
307
(
2015
).
22.
C. A.
Rinaldi
,
N. G.
Boggio
,
D.
Rodriguez
,
A.
Lamagna
,
A.
Boselli
,
F.
Manzano
,
J.
Codnia
, and
M. L.
Azcárate
, “
Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion
,”
Appl. Surf. Sci.
257
,
2019
2023
(
2011
).
23.
J. E.
Sinko
and
D. A.
Gregory
, “
Critical fluence effects in laser propulsion
,”
Proc. SPIE
7005
,
70051Z
(
2008
).
24.
R.
Tan
,
Y.
Zheng
,
C.
Ke
,
K.
Zhang
,
D.
Wang
,
C.
Wan
,
S.
Liu
, and
J.
Wu
, “
Investigation on momentum coupling coefficient for a parabolic shell
,”
Proc. SPIE
7005
,
70052R
(
2008
).
25.
H.
Tsuruta
,
B.
Wang
,
Z.
Wang
,
S.
Yokota
, and
A.
Sasoh
, “
Repetitive pulse performance of one-micrometer laser-ablation propulsion onto aluminum
,”
J. Propul. Power
30
,
1485
1489
(
2014
).
26.
B.
Wang
, “
Laser ablation impulse generated by irradiating aluminum target with nanosecond laser pulses at normal and oblique incidence
,”
Appl. Phys. Lett.
110
,
014101
(
2017
).
27.
W.
Zhang
,
Z.
Wei
,
Y.
Bin Wang
, and
G. Y.
Jin
, “
The process of a laser-supported combustion wave induced by millisecond pulsed laser on aluminum alloy
,”
Chin. Phys. Lett.
33
,
014205
(
2016
).
28.
Z.
Zhi-yuan
,
Z.
Jie
,
H. A. O.
Hui-ying
,
L. U.
Xin
, and
L. I.
Yu-tong
, “
Coupling coefficient enhanced by prepulse in laser plasma propulsion
,”
Opt. Phys.
2
,
477
479
(
2007
).
29.
Z. Y.
Zheng
,
H.
Gao
,
L.
Gao
,
J.
Xing
,
Z. J.
Fan
,
A. G.
Dong
, and
Z. L.
Zhang
, “
Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film
,”
Appl. Phys. A
115
,
1439
1443
(
2014
).
30.
Z. Y.
Zheng
,
J.
Zhang
,
Y.
Zhang
,
F.
Liu
,
M.
Chen
,
X.
Lu
, and
Y. T.
Li
, “
Enhancement of coupling coefficient of laser plasma propulsion by water confinement
,”
Appl. Phys. A: Mater. Sci. Process.
85
,
441
443
(
2006
).
31.
D. J.
Förster
,
S.
Faas
,
R.
Weber
, and
T.
Graf
, “
Thrust enhancement and propellant conservation for laser propulsion using ultra-short double pulses
,”
Appl. Surf. Sci.
510
,
145391
(
2020
).
32.
E.
Ahmad
,
N.
Nazeer
,
H.
Saeed
, and
A.
Younus
, “
Effect of plasma confinement on laser ablation propulsion parameters by using external semi-elliptical cavities for aluminum and silver propellants
,”
Phys. Scr.
98
,
095016
(
2023
).
33.
N.
Nazeer
,
A.
Younus
,
Y.
Jamil
, and
R.
Nadeem
, “
Plasma confinement using semi-spherical cavities for enhancement of ablative laser propulsion parameters
,”
Appl. Phys. B: Lasers Opt.
128
,
1
9
(
2022
).
34.
A.
Abbas
,
M. Q.
Zakaria
,
S. T.
Iqbal
, and
Y.
Jamil
, “
Experimenting on semiconductor using ablative laser propulsion to investigate propulsion parameters
,”
J. Laser Appl.
35
,
032016
(
2023
).
35.
D. A.
Gonzales
,
R. P.
Baker
, and
W.
St
, “
Micropropulsion using a Nd:YAG microchip laser
,”
Proc. SPIE
4760
,
752
765
(
2002
).
36.
R.
Guo
,
Y.
Zhang
,
Y.
Peng
,
J.
Zhu
,
Z.
Liu
, and
Y.
Jie Wei
, “
Experimental research on laser impulse coupling coefficient for metal coating target based on piezoelectric sensor
,”
Mater. Res. Innovations
19
,
S8-483
S8-485
(
2015
).
37.
H.
Horisawa
,
S.
Sumida
,
H.
Yonamine
, and
I.
Funaki
, “
Thrust generation through low-power laser-metal interaction for space propulsion applications
,”
Vacuum
88
,
75
78
(
2013
).
38.
Y.
Jamil
,
H.
Saeed
,
M.
Raza Ahmad
,
S.
Ahmad Khan
,
H.
Farooq
,
M.
Shahid
,
K. M.
Zia
, and
N.
Amin
, “
Measurement of ablative laser propulsion parameters for aluminum, Co-Ni ferrite and polyurethane polymer
,”
Appl. Phys. A: Mater. Sci. Process.
110
,
207
210
(
2013
).
39.
Y.
Zhang
,
X.
Lu
,
M. L.
Zhou
,
X. X.
Lin
,
Z. Y.
Zheng
,
Y. T.
Li
, and
J.
Zhang
, “
Laser propulsion with a high specific impulse using a thin film propellant
,”
Chin. Phys. B
20
,
087901
(
2011
).
40.
A. V.
Pakhomov
,
D. A.
Gregory
, and
M. S.
Thompson
, “
Specific impulse and other characteristics of elementary propellants for ablative laser propulsion
,”
AIAA J.
40
,
947
952
(
2002
).
41.
Z. Y.
Zheng
,
J.
Zhang
,
X.
Lu
,
Z. Q.
Hao
,
X. H.
Yuan
,
Z. H.
Wang
, and
Z. Y.
Wei
, “
Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses
,”
Appl. Phys. A: Mater. Sci. Process.
83
,
329
332
(
2006
).
42.
K. A.
Bhatti
,
M.
Khaleeq-ur-Rahman
,
H.
Jamil
,
A.
Latif
, and
M. S.
Rafique
, “
Characterization of plasma propulsion by Nd:YAG laser
,”
Vacuum
84
,
1080
1084
(
2010
).
43.
O.
Nife
,
N.
Zn
,
O.
Fe
,
P. E.
Meskin
,
V. K.
Ivanov
,
A. E.
Barantchikov
,
B. R.
Churagulov
, and
Y. D.
Tretyakov
, “
Ultrasonically assisted hydrothermal synthesis of nanocrystalline
,”
Ultrason. Sonochem.
13
,
47
53
(
2006
).
44.
K.
Matsubara
,
H.
Hosokawa
,
N.
Akashi
,
Y.
Oigawa
, and
H.
Horisawa
, “
A short-pulse laser-assisted pulsed plasma thruster
,”
AIAA
Paper No. 2015-4183,
2015
.
45.
J.
Chen
,
H.
Qian
,
B.
Han
,
Z. H.
Shen
, and
X. W.
Ni
, “
Investigation of the momentum coupling coefficient for propulsion by Nd:YAG laser at 1064 nm in atmospheric and water environment
,”
Optik
124
,
1650
1655
(
2013
).
46.
H.
Qiang
,
J.
Chen
,
B.
Han
,
Z.-H.
Shen
,
J.
Lu
, and
X.-W.
Ni
, “
Study of underwater laser propulsion using different target materials
,”
Opt. Express
22
,
17532
(
2014
).
47.
C. Y.
Cui
,
Y. J.
Hong
,
J. F.
Ye
,
M.
Wen
, and
N. L.
Li
, “
Effects of laser energy density on impulse coupling coefficient of laser ablation of water for propulsion
,”
Appl. Phys. A: Mater. Sci. Process.
103
,
239
243
(
2011
).
48.
B.
Han
,
Z. H.
Shen
,
J.
Lu
, and
X. W.
Ni
, “
Numerical study of water-confinement geometries for laser propulsion
,”
Opt. Lasers Eng.
48
,
950
957
(
2010
).
49.
Y.
Zhang
,
X.
Lu
,
Z. Y.
Zheng
,
F.
Liu
,
P. F.
Zhu
,
H. M.
Li
,
Y. T.
Li
,
Y. J.
Li
, and
J.
Zhang
, “
Transmitted laser propulsion in confined geometry using liquid propellant
,”
Appl. Phys. A: Mater. Sci. Process.
91
,
357
360
(
2008
).
50.
J.
Cao
,
H.
Cui
,
Y.
Zheng
,
Y.
Pan
,
J.
Zhang
,
L.
Wu
,
B.
Zhou
,
Y.
Ye
, and
R.
Shen
, “
Effect of absorption depth on chemical energy release from laser ablation of ADN-based liquid propellants
,”
Acta Astronaut.
204
,
116
123
(
2023
).
51.
C.
Phipps
and
J.
Luke
, “
Diode laser-driven microthrusters: A new departure for micropropulsion
,”
AIAA J.
40
,
310
318
(
2002
).
52.
C. R.
Phipps
,
J. R.
Luke
,
G. G.
McDuff
, and
T.
Lippert
, “
Laser ablation powered mini-thruster
,”
Proc. SPIE
4760
,
833
842
(
2002
).
53.
L.
Li
,
L.
Jiao
,
Z.
Tang
,
X.
Hu
, and
J.
Peng
, “
Effect of nozzle geometry on the performance of laser ablative propulsion thruster
,”
Appl. Phys. A: Mater. Sci. Process.
122
,
1
6
(
2016
).
54.
J.
Chen
,
B.-B.
Li
,
H.-C.
Zhang
,
B.
Han
,
Z.-H.
Shen
, and
X.-W.
Ni
, “
Propulsion of targets with different confinement geometries in water by Nd:YAG laser at 1064 nm
,”
Proc. SPIE
8603
,
86030W
(
2013
).
55.
A. V.
Gurin
,
K. Y.
Kuvaev
,
E. Y.
Loktionov
,
Y. S.
Protasov
,
K. N.
Sirenko
, and
V. I.
Zakharov
, “
First attempt of a laser thruster space flight test: Lost at launch
,”
Opt. Laser Technol.
120
,
1
6
(
2019
).
56.
H.
Saeed
,
Y.
Jamil
,
A.
Younas
, and
M.
Shahid
, “
Quantitative measurements of ablative laser propulsion parameters of metal foils using pulsed Nd:YAG laser
,”
Arab. J. Sci. Eng.
47
,
895
901
(
2022
).
57.
Y.
Ou
,
Y.
Zhang
,
J.
Wu
,
J.
Li
,
S.
Tan
, and
Y.
Zhao
, “
Comparative study of PTFE filled different dopants as propellants for laser-electric hybrid thruster
,”
Acta Astronaut.
183
,
199
210
(
2021
).
58.
P.
Battocchio
,
J.
Terragni
,
N.
Bazzanella
,
C.
Cestari
,
M.
Orlandi
,
W. J.
Burger
,
R.
Battiston
, and
A.
Miotello
, “
Ballistic measurements of laser ablation generated impulse
,”
Meas. Sci. Technol.
32
,
015901
(
2021
).
59.
D.
Tran
,
A.
Yogo
,
H.
Nishimura
, and
K.
Mori
, “
Impulse and mass removal rate of aluminum target by nanosecond laser ablation in a wide range of ambient pressure
,”
J. Appl. Phys.
122
,
233304
(
2017
).
60.
C. R.
Phipps
,
J. R.
Luke
,
G. G.
McDuff
, and
T.
Lippert
, “
Laser-driven micro-rocket
,”
Appl. Phys. A: Mater. Sci. Process.
77
,
193
201
(
2003
).
61.
N.
Zhang
,
Y.-B.
Zhao
, and
X.-N.
Zhu
, “
Light propulsion of microbeads with femtosecond laser pulses
,”
Opt. Express
12
,
3590
(
2004
).
62.
X.
Zhu
and
N.
Zhang
, “
Investigation of ultrashort pulse laser propulsion using time-resolved shadowgraphy and torsion pendulum
,”
Proc. SPIE
7382
,
738208
(
2009
).
63.
B.
D'Souza
and
A.
Ketsdever
, “
Direct impulse measurements of ablation processes from laser-surface interactions
,”
AIAA
Paper No. 2005-5172,
2012
.
64.
Y.
Zheng
,
R.
Tan
,
D.
Wang
,
G.
Zheng
,
C.
Ke
,
K.
Zhang
,
C.
Wan
, and
J.
Wu
, “
Coupling coefficient for TEA CO2 laser propulsion with variable pulse repetition rate
,”
Chin. Opt. Lett.
4
,
99
100
(
2006
).
65.
N.
Zhang
,
W.
Wang
,
X.
Zhu
,
J.
Liu
,
K.
Xu
,
P.
Huang
,
J.
Zhao
,
R.
Li
, and
M.
Wang
, “
Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum
,”
Opt. Express
19
,
8870
(
2011
).
66.
L.
Jiao
,
J.
Cai
,
H. H.
Ma
,
G. X.
Li
,
L.
Li
,
Z. W.
Shen
, and
Z. P.
Tang
, “
Research on applications of rectangular beam in micro laser propulsion
,”
Appl. Surf. Sci.
301
,
481
487
(
2014
).
67.
Y.
Zhang
,
D.
Zhang
,
J.
Wu
,
Z.
He
, and
H.
Zhang
, “
A novel laser ablation plasma thruster with electromagnetic acceleration
,”
Acta Astronaut.
127
,
438
447
(
2016
).
68.
C. R.
Phipps
,
T. P.
Turner
,
R. F.
Harrison
,
G. W.
York
,
W. Z.
Osborne
,
G. K.
Anderson
,
X. F.
Corlis
,
L. C.
Haynes
,
H. S.
Steele
,
K. C.
Spicochi
, and
T. R.
King
, “
Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers
,”
J. Appl. Phys.
64
,
1083
1096
(
1988
).
69.
C. R.
Phipps
,
M.
Boustié
,
J. M.
Chevalier
et al, “
Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength
,”
J. Appl. Phys.
122
,
193103
(
2017
).
70.
C. R.
Phipps
,
J. R.
Luke
, and
W. D.
Helgeson
, “
3ks specific impulse with a ns-pulse laser microthruster
,” in
Proceedings of the International Electric Propulsion Conference
,
Oct 30-Nov 4 2005
(
Princeton, NJ
,
2005
).
71.
R. J.
Thompson
and
T. M.
Moeller
, “
Computational investigations of performance improvements for microlaser ablation plasma thrusters using nozzles
,”
IEEE Trans. Plasma Sci.
39
,
2932
2933
(
2011
).
72.
R.
Chiba
,
Y.
Ishikawa
,
J.
Hasegawa
, and
K.
Horioka
, “
Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas
,”
Phys. Plasmas
24
,
063520
(
2017
).
73.
B. V.
Lakatosh
,
D. B.
Abramenko
,
V. V.
Ivanov
,
V. V.
Medvedev
,
V. M.
Krivtsun
,
K. N.
Koshelev
, and
A. M.
Yakunin
, “
Propulsion of a flat tin target with pulsed CO2 laser radiation: Measurements using a ballistic pendulum
,”
Laser Phys. Lett.
15
,
016003
(
2018
).
74.
Y. A.
Rezunkov
, “
Active space debris removal by using laser propulsion
,”
Prog. Propul. Phys.
4
,
803
819
(
2013
).
75.
R.
Shen
,
L.
Wu
,
Z.
Qin
,
X.
Wang
, and
N.
He
, “
New concept of laser-augmented chemical propulsion
,” in
Chemical Rocket Propulsion. Springer Aerospace Technology
, edited by
L.
De Luca
,
T.
Shimada
,
V.
Sinditskii
, and
M.
Calabro
(
Springer
,
Cham
,
2017
).
You do not currently have access to this content.