This work aimed to apply a simple method to evaluate the effect of anticancer drugs’ treatment on in vitro models of cancer cells by laser biospeckle pattern measurements. Thus, the study is concerned with the detection of reduced dosage required for targeting tumors by drug combination encapsulated in liposomal nanoparticles using biospeckle measurements. The curcumin drug encapsulated in liposomal nanoparticles was applied to target the MCF-7 breast cancer cells and HepG2 liver cancer cells on slides as biospecimens with different concentrations for both cancer cell models, separately. For each cancer cell model under treatment, a simple way is to access this information, as the surfaces of biosample were illuminated by a coherent laser beam of green wavelengths of 532.0 nm with output power < 50 mW. The random interference effects were produced, which are known as biospeckle patterns. These speckle patterns were imaged for biosamples of the cancer cells under test treatment for each liposomal drug concentration, digitally. Then, laser biospeckle contrast measurements were used along with an image processing program to detect the change in speckle patterns due to the change in cancer cell size, cancer cell density, and bioavailability, which correlated to the various liposomal curcumin concentrations. First, the obtained results emphasized that the polydispersity index has an acceptable value lower than 0.7 for the effective clinical applications of the used nanocarrier liposome formulations presented in this study. Second, the study pointed to the laser biospeckle technique as a useful method to evaluate intensity and contrast measurements, which correspond to a safe use of the liposomal curcumin drug at a suitable concentration and an acceptable cytotoxicity.

1.
T.
Feng
,
Y.
Wei
,
R. J.
Lee
, and
L.
Zhao
, “
Liposomal curcumin and its application in cancer
,”
Int. J. Nanomed.
12
,
6027
6044
(
2017
).
2.
D. D.
Lasic
,
Liposomes: From Physics to Applications
(
Elsevier
,
Amsterdam
,
1993
).
3.
D. D.
Lasic
and
D.
Papahadjopoulos
,
Medical Applications of Liposomes
(
Elsevier
,
Amsterdam
,
1998
).
4.
H.
Nsairat
,
D.
Khater
,
U.
Sayed
,
F.
Odeh
,
A.
Al Bawaband
, and
W.
Alshaer
, “
Liposomes: Structure, composition, types, and clinical applications
,”
Heliyon
8
,
e09394
(
2022
).
5.
K.
Matsuzaki
,
O.
Murase
, and
K.
Sugishita
, “
Shuji yoneyama, ken'ya akada, mayu ueha, akemi nakamura, satoe kobayash: Optical characterization of liposomes by right angle light scattering and turbidity measurement
,”
Biochim. Biophys. Acta
1467
,
219
226
(
2000
).
6.
T.
Sun
,
Y. S.
Zhang
,
B.
Pang
,
D. C.
Hyun
,
M.
Yang
, and
Y.
Xia
, “
Engineered nanoparticles for drug delivery in cancer therapy
,”
Angew. Chem.
53
,
12320
12364
(
2014
).
7.
S.
Jha
,
P. K.
Sharma
, and
R.
Malviya
, “
Liposomal drug delivery system for cancer therapy: Advancement and patents
,”
Recent Pat. Drug Deliv. Formul.
10
,
177
183
(
2016
).
8.
A. D.
Bangham
,
M. M.
Standish
, and
J. C.
Watlins
, “
Diffusion of univalent ions across the lamellae of swollen phospholipids
,”
J. Mol. Biol.
13
,
238
–252 (
1965
).
9.
A. D.
Bangham
,
M. W.
Hill
, and
N. G. A.
Miller
, “
Preparation and use of liposomes as models of biological membranes
,” in
Methods in Membrane Biology
, edited by
E. D.
Karn
(
Plenum
,
New York
,
1974
), Vol. 1, pp. 1–68.
10.
A.
Nagayasu
,
K.
Uchiyama
,
T.
Nishida
,
Y.
Yamagiwa
,
Y.
Kawai
, and
H.
Kiwada
, “
Is control of distribution of liposomes between tumors and bone marrow possible?
,”
Biochim. Biophys. Acta
1278
,
29
34
(
1996
).
11.
A.
Jośe Guillot
,
M.
Martinez-Navarrete
,
T. M.
Garrigues
, and
A.
Melero
, “
Skin drug delivery using lipid vesicles: A starting guideline for their development
,”
J. Contr. Rel.
355
,
642
654
(
2023
).
12.
J.
Stetefeld
,
S. A.
McKenna
, and
T. R.
Patel
, “
Dynamic light scattering: A practical guide and applications in biomedical sciences
,”
Biophys. Rev.
8
,
409
427
(
2016
).
13.
X.
Renliang
, “
Progress in nanoparticles characterization: Sizing and zeta potential measurement
,”
Particuology
6
,
112
115
(
2008
).
14.
W. H.
Peters
and
W. F.
Ranson
, “
Digital imaging techniques in experimental stress analysis
,”
Opt. Eng.
21
,
213427
(
1981
).
15.
V. V.
Satya Naga Lakshmi Andra
,
S. V. N.
Pammi
,
L. V.
Krishna Priya Bhatraju
, and
L. K.
Ruddaraju
, “
A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents
,”
Bionanoscience
12
,
274
291
(
2022
).
16.
P. M.
Boone
, “
Use of close range objective speckles for displacement measurement
,”
Opt. Eng.
21
,
213407
(
1982
).
17.
J. W.
Goodman
, “
Statistical properties of laser speckle patterns
,” in
Laser Speckle and Related Phenomena
, 2nd ed., edited by
J. C.
Dainty
(Springer Verlag, Berlin,
1975
), Vol. 9, pp. 9–74.
18.
J. W.
Goodman
, “
Some fundamental properties of speckle
,”
JOSA
66
,
1145
1150
(
1976
).
19.
B.
Nicholas
,
Y.
Hasan
,
B.
Yaron
, and
C.
Hui
, “
Creating and controlling complex light
,”
APL Photon
.
4
,
110806
(
2019
).
20.
N.
Bender
,
H.
Yılmaz
,
Y.
Bromberg
, and
H.
Cao
, “
Customizing speckle intensity statistics
,”
Optica
5
,
595
600
(
2018
).
21.
David
Briers
, “
Laser speckle contrast imaging for measuring blood flow
,”
Opt. Appl.
37
, 139–152 (
2007
).
22.
J. D.
Briers
, “
Wavelength dependence of intensity fluctuations in speckle patterns from biological specimens
,”
Opt. Commun.
13
,
324
326
(
1975
).
23.
H.
Balazs
and
H.
Albrecht
, “
Non-contact characterization of vertical regions of microstructures based on monochromatic speckle techniques
,”
Meas. Sci. Technol.
15
,
923
932
(
2004
).
24.
Z.
Gaoa
and
X.
Zhaob
, “
Roughness measurement of moving weak-scattering surface by dynamic speckle image
,”
Opt. Lasers Eng.
50
,
668
677
(
2012
).
25.
X.
Zhao
and
Z.
Gao
, “
Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction
,”
Opt. Lasers Eng.
47
,
1307
1316
(
2009
).
26.
B.
Dhanasekar
,
N.
Krishna Mohan
,
B.
Bhaduri
and
B.
Ramamoorthy
, “
Evaluation of surface roughness based on monochromatic speckle correlation using image processing
,”
Precis. Eng.
32
,
196
206
(
2008
).
27.
H.
El Ghandoor
,
G. M.
Youssef
,
M. A.
El-Aasser
, and
A. T.
Ahmed
, “
Investigation of laser speckle patterns of solar cells
,”
Int. J. Adv. Res.
7
,
61
70
(
2019
).
28.
O. A.
Abd El-Ghaffar
and
M. M.
Khalil
, “
Evaluation of laser bio speckle as a new tool to detect exposure to ionizing radiation: A new dosimetric approach
,”
Opt. Laser Technol.
140
,
107068
(
2021
).
29.
M.
Badran
, “
Formulation and in vitro evaluation of flufenamic acid loaded deformable liposome for improved skin delivery
,”
Dig. J. Nanometer. Biostruct.
9
,
83
91
(
2014
).
30.
M.
Chen
,
X.
Liu
, and
A.
Fahr
, “
Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application
,”
Int. J. Pharm.
408
,
223
234
(
2011
).
31.
D. C.
Putri
,
R.
Dwiastuti
,
M.
Marchaban
, and
A. K.
Nugroho
, “
Optimization of mixing temperature and sonication duration in liposome preparation
,”
J. Pharm. Sci. Commun.
14
,
79
85
(
2017
).
32.
D. D.
Verma
,
S.
Verma
,
G.
Blume
, and
A.
Fahr
, “
Particle size of liposomes influences dermal delivery of substances into skin
,”
Int. J. Pharm.
258
,
141
151
(
2003
).
33.
H.
Refai
,
D.
Hassan
, and
R.
Abdelmonem
, “
Development and characterization of polymer coated liposomes for vaginal delivery of sildenafil citrate
,”
Drug Deliv.
24
,
278
288
(
2017
).
34.
K.
Matsuzaki
,
O.
Murase
,
K.
Sugishita
,
S.
Yoneyama
,
K.
Akada
,
M.
Ueha
,
A.
Nakamura
, and
S.
Kobayashi
, “
Optical characterization of liposomes by right angle light scattering and turbidity measurement
,”
Biochim. Biophys. Acta
1467
,
219
226
(
2000
).
35.
A.
Geltmeier
,
B.
Rinner
,
D.
Bade
,
K.
Meditz
,
R.
Witt
,
U.
Bicker
,
C.
Bludszuweit-Philipp
, and
P.
Maier
, “
Characterization of dynamic behaviour of MCF7 and MCF10A cells in ultrasonic field using modal and harmonic analyses
,”
PLoS One
10
, e
0134999
(
2015
).
36.
V. A.
Arzumanian
,
O. I.
Kiseleva
, and
E. V.
Poverennaya
, “
The curious case of the HepG2 cell line: 40 years of expertise
,”
Int. J. Mol. Sci.
22
,
13135
(
2021
).
37.
D.
Chicea
, “
Speckle size, intensity and contrast measurement application in micron-size particle concentration assessment
,”
Eur. Phys. J. Appl. Phys.
40
,
305
310
(
2007
).
38.
Dan
Chicea
, “
Estimating particle concentration in natural water by speckle contrast
,”
Transylv. Rev. Syst. Ecol. Res.
15
,
1
–10 (
2013
).
39.
ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity (International Organization for Standardization, Geneva, 2009), German version EN ISO 10993-5:2009.
40.
J.
López-García
,
M.
Lehocký
,
P.
Humpolíček
, and
P.
Sáha
, “
Hacat keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation
,”
J. Funct. Biomater.
5
,
43
57
(
2014
).
41.
C.
Berrouet
,
N.
Dorilas
,
K. A.
Rejniak
, and
N.
Tuncer
, “
Comparison of drug inhibitory effects (IC50) in monolayer and spheroid cultures
,”
Bull. Math. Biol.
82
,
68
(
2020
).
42.
M.
Danaei
,
M.
Dehghankhold
,
S.
Ataei
,
F.
Hasanzadeh Davarani
,
R.
Javanmard
,
A.
Dokhani
,
S.
Khorasani
, and
M. R.
Mozafari
, “
Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems
,”
Pharmaceutics
10
,
57
(
2018
).
You do not currently have access to this content.