The growing prominence of the electric vehicle industry, fueled by environmental concerns, has demanded innovation in various aspects of battery technologies with special emphasis on increasing the efficiency of both electric storage and its retrieval. An unexplored area of this is to identify the possibilities and limits of laser soldering. Here, we reveal the effects of surface pretreatment conditions and the amount of filler, along with the laser power and irradiation time on the characteristics of laser-soldered joints, by simultaneously evaluating the electrical and mechanical behavior of laser-soldered nickel-plated steel sheets (Hilumin®). By describing the morphological characteristics of the resolidified solder and the electrical and mechanical properties of the joints, we identify three, characteristically different morphological appearances and highlight the optimal one, where uniform and mostly void-free solder can be produced. Furthermore, we report a correlation between the threshold of upper sheet melting (either expressed as laser power or irradiation time) and joint deterioration in terms of the electrical and mechanical properties of the joint. We conclude that laser soldering can create joints with outstanding electrical conductance and adequate mechanical stability that meets the critical specifications of battery joining technologies when the surface pretreatment condition and processing parameters are properly optimized.

1.
J. A.
Sanguesa
,
V.
Torres-Sanz
,
P.
Garrido
,
F. J.
Martinez
, and
J. M.
Marquez-Barja
, “
A review on electric vehicles: Technologies and challenges
,”
Smart Cities
4
,
372
404
(
2021
).
2.
V.
Madonna
,
P.
Giangrande
, and
M.
Galea
, “
Electrical power generation in aircraft: Review, challenges, and opportunities
,”
IEEE Trans. Transport. Electr.
4
,
646
659
(
2018
).
3.
S. S.
Lee
,
T. H.
Kim
,
S. J.
Hu
,
W. W.
Cai
, and
J. A.
Abell
, “
Joining technologies for automotive lithium-ion battery manufacturing: A review
,” in
Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference
,
Erie, PA
, 12–15 October 2010 (American Society of Mechanical Engineers, New York,
2010
), Vol. 1, pp. 541–549.
4.
V. R.
Rikka
,
S. R.
Sahu
,
A.
Roy
,
S.
Jana
,
D.
Sivaprahasam
,
R.
Prakash
,
R.
Gopalan
, and
G.
Sundararajan
, “
Tailoring micro resistance spot welding parameters for joining nickel tab to inner aluminium casing in a cylindrical lithium ion cell and its influence on the electrochemical performance
,”
J. Manuf. Proc.
49
,
463
471
(
2019
).
5.
Tata Steel Europe Limited, www.tatasteeleurope.com/automotive/key-products/hilumin for “Datasheet of Hilumin® steel sheets” (accessed September 2023).
6.
M. J.
Brand
,
P. A.
Schmidt
,
M. F.
Zaeh
, and
A.
Jossen
, “
Welding techniques for battery cells and resulting electrical contact resistances
,”
J. Energy Storage
1
,
7
14
(
2015
).
7.
T.
Solchenbach
,
P.
Plapper
, and
W.
Cai
, “
Electrical performance of laser braze-welded aluminum–copper interconnects
,”
J. Manuf. Proc.
16
,
183
189
(
2014
).
8.
J. S.
Hwang
,
Solder Paste in Electronics Packaging: Technology and Applications in Surface Mount, Hybrid Circuits, and Component Assembly
, 1st ed. (
Springer Dordrecht
,
Dordrecht
,
2012
), ISBN:978-94-011-6050-6.
9.
R.
Bunea
,
P.
Svasta
,
Z.
Illyefalvi-Vitez
,
R.
Batorfi
, and
A.
Geczy
, “
Optimizing laser soldering of SMD components: From theory to practice
,” in
Proceedings of the 2011 IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME)
,
Timisoara, Romania, 20–23 October 2011
(
IEEE
,
New York,
2011
), Vol. 1, pp. 55–58.
10.
M. J.
Brand
,
E. I.
Kolp
,
P.
Berg
,
T.
Bach
,
P.
Schmidt
, and
A.
Jossen
, “
Electrical resistances of soldered battery cell connections
,”
J. Energy Storage
12
,
45
54
(
2017
).
11.
N.
Ismail
,
A.
Atiqah
,
A.
Jalar
,
M. A.
Bakar
,
R. A. A.
Rahim
,
A. G.
Ismail
,
A. A.
Hamzah
, and
L. K.
Keng
, “
A systematic literature review: The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints
,”
J. Manuf. Proc.
83
,
68
85
(
2022
).
12.
K.
Ferjutz
and
J. R.
Davis
,
ASM Handbook Vol. 6 Welding, Brazing and Soldering
(
ASM International
,
Novelty
,
1993
), ISBN:978-0871703828.
13.
R. V.
Nanditta
and
N. B.
Rahul
, “
Review on comparative study of various automotive cell joining techniques and challenges
,”
Proceedings of 2022 International Conference on Electronics and Renewable Systems (ICEARS)
,
Tuticorin, India, 16–18 March 2022
(
IEEE, New York
,
2022
), Vol. 1, pp. 136–141.
14.
G.
Becker
, “
From soldering iron to laser: A review of soldering methods for surface mounting
,”
Microelectron. Int.
4
,
22
27
(
1987
).
15.
J. F.
Ready
,
D. F.
Farson
, and
T.
Feeley
,
LIA Handbook of Laser Materials Processing
, 1st ed. (
Magnolia
,
New York
,
2001
), ISBN: 978-3-540-41770-5.
16.
S.
Nothdurft
,
A.
Springer
,
S.
Kaierle
,
J.
Ross
, and
M.
Stonis
, “
Laser soldering and brazing of steel-aluminum sheets for tailored hybrid tubes
,”
J. Laser Appl.
28
(
2016
).
17.
M. F. R.
Zwicker
,
M.
Moghadam
,
W.
Zhang
, and
C. V.
Nielsen
, “
Automotive battery pack manufacturing—A review of battery to tab joining
,”
J. Adv. Joining Proc.
1
,
100017
(
2020
).
18.
H.
Kastler
and
K.
Menzl
, “
Effective battery design and integration of cylindrical cells for high power applications
,” in
Proceedings of CTI SYMPOSIUM 2019
,
Berlin, Germany, 9–12 December 2019
(Springer-Verlag, Wiesbaden,
2021
), Vol. 1, pp. 283–293.
19.
Kreisel Electric, “Battery module and battery system,”
patent EP3096372A1
, accessed February 2023 (
2016
) https://patents.google.com/patent/EP3096372A1/en
20.
F.
Lerra
,
A.
Ascari
, and
A.
Fortunato
, “
The influence of laser pulse shape and separation distance on dissimilar welding of Al and Cu films
,”
J. Manuf. Proc.
45
,
331
339
(
2019
).
21.
P.
Schmalen
and
P.
Plapper
, “
Evaluation of laser braze-welded dissimilar Al-Cu joints
,”
Phys. Proc.
83
,
506
514
(
2016
).
22.
T. A.
Mai
and
A. C.
Spowage
, “
Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium
,”
Mater. Sci. Eng. A
374
,
224
233
(
2004
).
23.
W.
Shi
,
W.
Wang
, and
Y.
Huang
, “
Laser micro-welding of Cu-Al dissimilar metals
,”
Int. J. Adv. Manuf. Technol.
85
,
185
189
(
2016
).
24.
M.
Schmidt
and
M.
Weigl
, “
Laser-bonding in high power electronics
,”
J. Laser Micro/Nanoeng.
5
,
242
247
(
2010
).
25.
Y.
Li
,
C.
Chen
,
R.
Yi
, and
Y.
Ouyang
, “
Review: Special brazing and soldering
,”
J. Manuf. Proc.
60
,
608
635
(
2020
).
26.
D.
Krishnaja
,
M.
Cheepu
, and
D.
Venkateswarlu
, “
A review of research progress on dissimilar laser weld-brazing of automotive applications
,”
IOP Conf. Series: Mater. Sci. Eng.
330
,
012073
(
2018
).
27.
I.
Bunaziv
,
O. M.
Akselsen
,
X.
Ren
,
B.
Nyhus
,
M.
Eriksson
, and
S.
Gulbrandsen-Dahl
, “
A review on laser-assisted joining of aluminium alloys to other metals
,”
Metals
11
,
1680
(
2021
).
28.
FELDER GMBH Löttechnik, see www.felder.de/files/felder/pdf/EN_18-ISO-Core_RA_lead-free.pdf for “Datasheet of lead free solder” (accessed September 2023).
29.
Olympus, see www.olympus-ims.com/en/metrology/surface-roughness-measurement-portal/parameters/#!cms[focus]=007 for “Profile method of Olympus DSX510 optical microscope” (accessed September 2023).
30.
ISO 4287:1997 Standard, International Organization for Standardization, www.iso.org/standard/10132.html (accessed February 2023).
31.
P.
Rous
and
F
Steiner
, “
Effect of surface finish and roughness on the mechanical strength of solder joints
”, in
46th International Spring Seminar on Electronics Technology (ISSE)
,
Timisoara
, Romania, 10–14 May 2023 (IEEE, New York,
2023
), pp.
1
5
.
32.
A.
Körmöczi
,
G.
Horváth
,
T.
Szörényi
, and
Z.
Geretovszky
, “
Laser-assisted filler-based joining for battery assembly in aviation
,”
SAE Int. J. Aerospace
13
,
129
141
(
2020
).
33.
T.
Iida
and
R. I. L.
Guthrie
,
The Physical Properties of Liquid Metals
(
Oxford University
, Oxford,
1988
), ISBN: 978-0198563310.
34.
R.
Brandt
and
G.
Neuer
, “
Measurement of the electric resistivity of metals up to and above the melting temperature
,”
Ad. Eng. Mater.
5
,
52
55
(
2003
).
You do not currently have access to this content.