In this paper, laser cleaning of thermal barrier coatings is investigated by finite element simulation and experiments. The effect of different parameters on the maximum temperature of the substrate surface during the cleaning process is studied. The results show that the repetition frequency and pulse width have little effect on the maximum temperature of the substrate surface, and the maximum temperature of the substrate surface has an approximately linear relationship with the laser power and an exponential decay relationship with the scanning speed. From the perspective of cleaning efficiency and damage to the substrate, the parameter windows for laser cleaning of thermal barrier coatings were obtained. The highest cleaning efficiency for the top ceramic layer is about 3.02 mm3/s. The highest cleaning efficiency for the bond layer is about 2.17 mm3/s.

1.
J. G.
Thakare
,
C.
Pandey
,
M. M.
Mahapatra
, and
R. S.
Mulik
, “
Thermal barrier coatings—A state of the art review
,”
Metals Mater. Int.
27
,
1947
1968
(
2020
).
2.
R. A.
Miller
, “
Current status of thermal barrier coatings—An overview
,”
Surf. Coat. Technol.
30
,
1
11
(
1987
).
3.
N. P.
Padture
,
M.
Gell
, and
E. H.
Jordan
, “
Thermal barrier coatings for Gas-turbine engine applications
,”
Science
296
,
280
284
(
2002
).
4.
Z. Y.
Li
,
X. T.
Wei
,
Y. B.
Guo
, and
M. P.
Sealy
, “
State-of-art, challenges, and outlook on manufacturing of cooling holes for turbine blades
,”
Mach. Sci. Technol.
19
,
361
399
(
2015
).
5.
B. M.
Warnes
and
J. E.
Schilbe
, “
Molten metal hydroxide removal of thermal barrier coatings
,”
Surf. Coat. Technol.
146
,
147
151
(
2001
).
6.
H. N.
Kim
,
M. P.
Hawron
,
W.
Hassan
,
E. H.
Jordan
, and
M. W.
Renfro
, “
Contaminant identification during laser cleaning of thermal barrier coatings
,”
Surf. Coat. Technol.
270
,
86
94
(
2015
).
7.
X.
Yang
,
J.
Zhang
,
Z.
Lu
,
H. Y.
Park
, and
Y. G.
Jung
, “
Removal and repair techniques for thermal barrier coatings: A review
,”
Trans. IMF.
98
,
121
128
(
2020
).
8.
D. J.
Whitehead
,
P. L.
Crouse
,
M. J. J.
Schmidt
,
L.
Li
,
M. W.
Turner
, and
A. J. E.
Smith
, “
Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy
,”
Appl. Phys. A
93
,
123
127
(
2008
).
9.
T.
Burdel
,
W.
Sascha
,
F.
Birgit
, and
S.
Till
, “
Lasers and applications in parts cleaning and surface pre-treatment
,”
SPIE Proc.
8603
,
86030E
(
2013
).
10.
M.
Jafari Eskandari
,
M.
Araghchi
, and
H.
Daneshmand
, “
Aluminum oxide nanotubes fabricated via laser ablation process: Application as superhydrophobic surfaces
,”
Opt. Laser Technol.
155
,
108420
(
2022
).
11.
S.
Marimuthu
,
A. M.
Kamara
,
H. K.
Sezer
,
L.
Li
, and
G. K. L.
Ng
, “
Numerical investigation on laser stripping of thermal barrier coating
,”
Comput. Mater. Sci.
88
,
131
138
(
2014
).
12.
J. C.
Hernandez-Castaneda
,
W. Y.
Chi
,
F. Y.
Wei
, and
N. F.
Lan
, “
Investigation on high power laser removal of thermal barrier coating (TBC) and bond layer (MCrAlY) from Inconel 718 alloy
,”
Int. J. Peening Sci. Technol.
1
,
201
219
(
2019
).
13.
Z. C.
Guan
,
W.
Qian
, and
J. Q.
Jin
, “
Efficient thermal barrier coating removal by nanosecond laser
,”
JOM
75
,
55
63
(
2022
).
14.
X.
Zhou
,
K. H.
Imasaki
,
H.
Umino
,
K.
Sakagishi
,
S.
Nakai
, and
C.
Yamanaka
, “
Simulation study and experiment on laser-ablation surface cleaning
,”
Opt. Laser Technol.
33
,
189
194
(
2001
).
15.
S.
Marimuthu
,
A.
Mhich
,
I. S.
Molchan
,
D.
Whitehead
,
Z. B.
Wang
, and
P.
Mativenga
, “
Numerical simulation of excimer laser cleaning of film and particle contaminants
,”
J. Heat Trans.
135
,
121301
(
2013
).
16.
X.
Zhou
,
K.
Imasaki
,
H.
Furukawa
,
H.
Umino
,
K.
Sakagishi
,
S.
Nakai
, and
C.
Yamanaka
, “
Simulation study and experiment on laser-ablation surface cleaning
,”
Opt. Laser Technol.
33
,
189
194
(
2001
).
17.
M.
Sabaeian
,
S.
Fatemeh
, and
M.
Mostafa
, “
Temperature distribution in a Gaussian end-pumped nonlinear KTP crystal: The temperature dependence of thermal conductivity and radiation boundary condition
,”
Braz. J. Phys.
45
,
1
9
(
2014
).
18.
E.
Akca
and
G.
Ali
, “
A review on superalloys and IN718 nickel-based INCONEL superalloy
,”
Period. Eng. Nat. Sci.
3
,
15
27
(
2015
).
19.
H. J.
Zhang
,
L.
Chong
, and
Q. Y.
Guo
, “
Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 °C: The role of δ phase
,”
Mater. Sci. Eng.
722
,
136
146
(
2018
).
20.
K.
Praveen
,
S.
Sivakumar
, and
P.
Ananthapadmanabhan
, “
Lanthanum cerate thermal barrier coatings generated from thermal plasma synthesized powders
,”
Ceram. Int.
44
,
6417
6425
(
2018
).
21.
B.
Tryon
,
F.
Cao
,
K. S.
Murphy
,
C. G.
Levi
, and
T. M.
Pollock
, “
Ruthenium-containing bond coats for thermal barrier coating systems
,”
JOM
58
,
53
59
(
2006
).
22.
Z.
Zhou
,
W.
Sun
,
J.
Wu
,
H.
Chen
,
F.
Zhang
, and
S.
Wang
, “
The fundamental mechanisms of laser cleaning technology and its typical applications in industry
,”
Processes
11
,
1445
–1461 (
2023
).
23.
G.
Zhu
,
Z.
Xu
,
Y.
Jin
,
X.
Chen
,
L.
Yang
,
J.
Xu
,
D.
Shan
,
Y.
Chen
, and
B.
Guo
, “
Mechanism and application of laser cleaning: A review
,”
Opt. Lasers Eng.
157
,
107130
(
2022
).
You do not currently have access to this content.