Continuous measurement of pressure is vital in many fields of industry, medicine, and science. Of particular interest is the ability to measure pressure in a noninvasive and contact-free manner. This work presents the potential of oblique incident reflectometry (OIR) to monitor variation in pressure via the reduced scattering parameter ( μ s ). Pressure deforms the geometry of the medium and causes distortion of its internal structure and the spatial distribution of optical properties. Light scattering is related to the morphology (size, density, distribution, etc.) and refractive index distributions of the medium, and applied pressure will influence directly these parameters. Therefore, we assume that pressure can be quantitatively assessed through monitoring the reduced scattering coefficient. For this purpose, the technique of OIR to evaluate the scattering parameter during pressure variations was utilized. OIR is a simple noninvasive and contact-free imaging technique able to quantify both absorption and scattering properties of a sample. In our setup, the medium is illuminated obliquely by a narrow laser beam, and the diffuse reflectance light is captured by a CCD camera. In offline processing, the shift (δ) of the diffuse light center from the incident point is mathematically analyzed and μ s coefficient ( μ s δ 1 ) is extracted. We present here confirmation of the validity of this assumption through results of a series of experiments performed on turbid liquid and artery occlusion of a human subject under different pressure levels. Thus, μ s has the potential to serve as a good indicator for the monitoring of pressure.

1.
T. G.
Beckwith
and
R. D.
Marangoni
,
Mechanical Measurements
, 4th ed. (
Addison-Wesley, Inc.
,
Reading
,
MA
,
1990
), Chap. 14.
2.
V. L.
Streeter
and
E. B.
Wylie
,
Fluid Mechanics
, 6th ed. (
McGraw-Hill Book Company
,
New York
,
1975
).
3.
S.
Maitra
, “
Two wire pressure transmitter using Bourdon tube pressure sensor and LVDT—An advance pressure transmitter
,”
Commun. Appl. Electron.
3
,
39
44
(
2015
).
4.
A.
Mohapatr
, “
Design and implementation of diaphragm type pressure sensor in a direct tire pressure monitoring system (TPMS) for automotive safety applications
,”
Int. J. Eng. Sci. Technol.
3
,
6514
6524
(
2011
).
5.
S.
Chattopadhyay
, “
Modified AC Wheatstone bridge network for accurate measurement of pressure using strain gauge type pressure sensor
,”
Sens. Trans.
136
,
25
34
(
2012
).
6.
R.
Olaru
,
C.
Pal
, and
C.
Petrescu
, “
Current to pressure transducer with magnetic fluid
,”
Sens. Actuators A: Phys.
91
,
150
152
(
2001
).
7.
P.
Muntner
et al, “
Measurement of blood pressure in humans: A scientific statement from the American Heart Association
,”
Hypertension
73
,
e35
e66
(
2019
).
8.
M. K.
Ali Hassan
,
M. Y.
Mashor
,
N. F.
Mohd Nasir
, and
S.
Mohamed
, “
Measuring of systolic blood pressure based on heart rate
,” in
4th Kuala Lumpur International Conference on Biomedical Engineering
(IFMBE Proceedings, Springer, Berlin, Heidelberg, 2008), Vol. 21.
9.
E.
Wolvaardt
and
S.
Stevens
, “
Measuring intraocular pressure
,”
Commun. Eye Health
32
,
56
57
(
2019
).
10.
M.
Abraham
and
V.
Singhal
, “
Intracranial pressure monitoring
,”
J. Neuroanaesthesiol. Crit. Care
02
,
193
203
(
2015
).
11.
P.
Roriz
,
O.
Frazão
,
A. B.
Lobo-Ribeiro
,
J. L.
Santos
, and
J. A.
Simoes
, “
Review of fiber-optic pressure sensors for biomedical and biomechanical applications
,”
J. Biomed. Opt.
18
,
050903
(
2013
).
12.
L.
Li
,
J.
Zheng
,
J.
Chen
, and
L.
Zebang
, “
Flexible pressure sensors for biomedical applications: From ex vivo to in vivo
,”
Adv. Mater. Interfaces
7
,
2000743
(
2020
).
13.
L.
Wang
and
S. L.
Jacques
, “
Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium
,”
Appl. Opt.
34
,
2362
2366
(
1995
).
14.
J. D.
Rogers
,
A. J.
Radosevich
,
J.
Yi
, and
V.
Backman
, “
Modeling light scattering in tissue as continuous random media using a versatile refractive index correlation function
,”
IEEE J. Sel. Top. Quantum Electron.
20
,
7000514
(
2014
).
15.
J.
Stetefeld
,
S. A.
McKenna
, and
T. R.
Patel
, “
Dynamic light scattering: A practical guide and applications in biomedical sciences
,”
Biophys. Rev.
8
,
409
427
(
2016
).
16.
V.
Tuchin
,
Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis
, 2nd ed. (
SPIE Press
,
Bellingham
,
WA
,
2007
).
17.
H.
Shangguan
,
S. A.
Prahl
,
S. L.
Jacques
,
L. W.
Casperson
, and
K. W.
Gregory
, “
Pressure effects on soft tissues monitored by changes in tissue optical properties
,”
Proc. SPIE
3254
,
366
371
(
1998
).
18.
E. K.
Chan
,
B.
Sorg
,
D.
Protsenko
,
M.
O'Neil
,
M.
Motamedi
, and
A. J.
Welch
, “
Effects of compression on soft tissue optical properties
,”
IEEE J. Sel. Top Quantum Electron.
2
,
943
950
(
1996
).
19.
B.
Cugmas
,
M.
Bürmen
,
M.
Bregar
,
F.
Pernuš
, and
B.
Likar
, “
Pressure-induced near infrared spectra response as a valuable source of information for soft tissue classification
,”
J. Biomed. Opt.
18
,
047002
(
2013
).
20.
A. P.
Popov
,
A. V.
Bykov
, and
I. V.
Meglinski
, “
Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo
,”
J. Biomed. Opt.
22
,
110504
(
2017
).
21.
M.
Ali Ansari
,
M.
Erfanzadeh
,
S.
Alikhani
, and
E.
Mohajerani
, “
Study of the effect of mechanical pressure on determination of position and size of tumor in biological phantoms
,”
Appl. Opt.
52
,
2739
2749
(
2013
).
22.
Y.
Su
,
X. S.
Yao
,
C.
Wei
,
Y.
Wang
,
H. E.
Wang
, and
Z.
Li
, “
Determination of the pressure coefficient of optical attenuation in different layers of in-vivo human skins with optical coherence tomography
,”
IEEE Photonics
8
,
3800110
(
2016
).
23.
S.
Jiang
,
B. W.
Pogue
,
K. D.
Paulsen
,
C.
Kogel
, and
S. P.
Poplack
, “
In vivo near-infrared spectral detection of pressure-induced changes in breast tissue
,”
Opt. Lett.
28
,
1212
1214
(
2003
).
24.
T.
Lindbergh
,
M.
Larsson
,
I.
Fredriksson
, and
T.
Strömberg
, “
Reduced scattering coefficient determination by non-contact oblique angle illumination: Methodological considerations
,”
Proc. SPIE
6345
,
643501
(
2007
).
25.
F.
Kamran
and
P. E.
Andersen
, “
Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations
,”
Appl. Opt.
54
,
7099
7105
(
2015
).
26.
L. V.
Wang
and
H.-I.
Wu
,
Biomedical Optics Principles and Imaging
(
Wiley & Sons, Inc.
,
New York
,
2007
), Chap. 7.
27.
D. A.
Boas
,
C.
Pitris
, and
N.
Ramanujam
,
Handbook of Biomedical Optics
(
CRC Press
,
Boca Raton
,
FL
,
2011
).
28.
I.
Carneiro
,
S.
Carvalho
,
V.
Silva
,
R.
Henrique
,
L.
Oliveira
, and
V. V.
Tuchin
, “
Kinetics of optical properties of human colorectal tissues during optical clearing: A comparative study between normal and pathological tissues
,”
J. Biomed. Opt.
23
,
121620
(
2018
).
29.
V. V.
Tuchin
,
Optical Clearing of Tissue and Blood
(
SPIE Press
,
Bellingham
,
WA
,
2006
), Chap. 1.
30.
M.
Lazebnik
,
D. L.
Marks
,
K.
Potgieter
,
R.
Gillette
, and
S. A.
Boppart
, “
Functional optical coherence tomography for detecting neural activity through scattering changes
,”
Opt. Lett.
28
,
1218
1220
(
2003
).
31.
X.-C.
Yao
,
A.
Yamauchi
,
B.
Perry
, and
J. S.
George
, “
Rapid optical coherence tomography and recording functional scattering changes from activated frog retina
,”
Appl. Opt.
44
,
2019
2023
(
2005
).
32.
D.
Rector
,
K.
Carter
,
P.
Volegov
, and
J.
George
, “
Spatio-temporal mapping of rat whisker barrels with fast scattered light signals
,”
Neuroimage
26
,
619
627
(
2005
).
33.
R. D.
Frostig
,
In Vivo Optical Imaging of Brain Function
, 2nd ed. (
CRC Press
,
Boca Raton
,
FL
,
2009
), Chap. 5.
34.
Y.
Cao
,
T.
Zheng
,
Z.
Wu
,
J.
Tang
,
C.
Yin
, and
C.
Dai
, “
Lab-in-a-phone: A lightweight oblique incidence reflectometer based on smartphone
,”
Opt. Commun.
489
,
126885
(
2021
).
35.
R. A.
Wall
and
J. K.
Barton
, “
Oblique incidence reflectometry: Optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system
,”
J. Biomed. Opt.
19
,
067002
(
2014
).
36.
A.
Garcia-Uribe
,
E. B.
Smith
,
J.
Zou
,
M.
Duvic
,
V.
Prieto
, and
L. V.
Wang
, “
In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry
,”
J. Biomed. Opt.
16
,
020501
(
2011
).
37.
J.
Xia
,
A.
Weaver
,
D. E.
Gerrard
, and
G.
Yao
, “
Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance
,”
J. Biomed. Opt.
11
,
040504
(
2006
).
38.
O. H. A.
Abildgaard
,
F.
Kamran
,
A. B.
Dahl
,
J. L.
Skytte
,
F. D.
Nielsen
,
C. L.
Thomsen
,
P. E.
Andersen
,
R.
Larsen
, and
J. R.
Frisvad
, “
Non-invasive assessment of dairy products using spatially resolved diffuse reflectance spectroscopy
,”
Appl. Spectrosc.
69
,
1096
1105
(
2015
).
39.
G.
Marquez
and
L.
Wang
, “
White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra of tissue-like turbid media
,”
Opt. Express
1
,
454
460
(
1997
).
40.
S.-P.
Lin
,
L.
Wang
,
S. L.
Jacques
, and
F. K.
Tittel
, “
Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry
,”
Appl. Opt.
36
,
136
143
(
1997
).
41.
L.
Dai
,
Y.
Luo
, and
X.
Fu
, “
Simple demodulation method for optical property extraction in spatial frequency domain imaging
,”
Appl. Opt.
60
(
26
),
7878
7887
(
2021
).
42.
B.
Aernouts
,
E.
Polshin
,
J.
Lammertyn
, and
W.
Saeys
, “
Visible and near infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance?
,”
J. Dairy. Sci.
94
(
11
),
5315
5329
(
2011
).
43.
C.
Veenstra
,
A.
Lenferink
,
W.
Petersen
,
W.
Steenbergen
, and
N.
Bosschaart
, “
Optical properties of human milk
,”
Biomed. Opt. Express.
10
(8),
4059
4074
(
2019
).
44.
J.-L.
Audic
,
B.
Chaufer
, and
G.
Daufin
, “
Non-food applications of milk components and dairy co-products: A review
,”
Le Lait
83
,
417
438
(
2003
).
45.
J. A.
Räty
and
K.-E.
Peiponen
, “
Reflectance study of milk in the UV-visible range
,”
Appl. Spectrosc.
53
,
1123
1127
(
1999
).
46.
L.
Dai
,
Y.
Luo
, and
X.
Fu
, “
Simple demodulation method for optical property extraction in spatial frequency domain imaging
,”
Appl. Opt.
60
,
7878
7887
(
2021
).
47.
P. A.
Kyriacou
,
K.
Shafqat
, and
S. K.
Pal
, “
Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion
,”
J. Phys.: Conf. Ser.
85
,
012026
(
2007
).
48.
M.
Shafique
,
P. A.
Kyriacou
, and
S. K.
Pal
, “
Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO2 sensor
,”
Med. Biol. Eng. Comput.
50
,
575
583
(
2012
).
49.
Y.
Shang
,
K.
Gurley
,
B.
Symons
,
D.
Long
,
R.
Srikuea
,
L. J.
Crofford
,
C. A.
Peterson
, and
G.
Yu
, “
Noninvasive optical characterization of muscle blood flow, oxygenation, and metabolism in women with fibromyalgia
,”
Arthritis Res. Therapy
14
,
R236
(
2012
).
50.
G.
Marquez
,
L.
Wang
,
S.-P.
Lin
,
S. L.
Jacques
,
F. K.
Tittel
,
S. L.
Thomsen
, and
J.
Schwartz
, “
Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry
,”
Proc. SPIE
2976
,
306
317
(
1997
).
51.
R. M. P.
Doornbos
,
R.
Lang
,
M. C.
Aalders
,
F. W.
Cross
, and
H. J. C. M.
Sterenborg
, “
The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy
,”
Phys. Med. Biol.
44
,
967
981
(
1999
).
52.
H.
Yang
,
S.
Xie
,
H.
Li
, and
Z.
Lu
, “
Determination of human skin optical properties in vivo from reflectance spectroscopic measurements
,”
Chin. Opt. Lett.
5
,
181
183
(
2007
).
53.
T.
Lister
,
P. A.
Wright
, and
P. H.
Chappell
, “
Optical properties of human skin
,”
J. Biomed. Opt.
17
,
90901
(
2012
).
54.
O.
Shaul
,
M.
Fanrazi-Kahana
,
O.
Meitav
,
G. A.
Pinhasi
, and
D.
Abookasis
, “
Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation
,”
Opt. Commun.
411
,
70
79
(
2018
).
55.
J.
Qin
and
R.
Lu
, “
Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging
,”
Appl. Spectrosc.
61
,
388
396
(
2007
).
56.
S.
Stocker
,
F.
Foschum
,
P.
Krauter
,
F.
Bergmann
,
A.
Hohmann
,
C. S.
Happ
, and
A.
Kienle
, “
Broadband optical properties of milk
,”
Appl. Spectrosc.
71
,
951
962
(
2017
).
57.
C.
Veenstra
,
A.
Lenferink
,
W.
Petersen
,
W.
Steenbergen
, and
N.
Bosschaart
, “
Optical properties of human milk
,”
Biomed. Opt. Exp.
10
,
4059
4074
(
2019
).
58.
I.
Nishidate
,
N.
Tanaka
,
T.
Kawase
,
T.
Maeda
,
T.
Yuasa
,
Y.
Aizu
,
T.
Yuasa
, and
K.
Niizeki
, “
Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera
,”
J. Biomed. Opt.
16
,
086012
(
2011
).
59.
A. A.
Stratonnikov
and
V. B.
Loschenov
, “
Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra
,”
J. Biomed. Opt.
6
,
457
467
(
2001
).
60.
G.
Zonios
,
J.
Bykowski
, and
N.
Kollias
, “
Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy
,”
J. Invest. Dermatol.
117
,
1452
1457
(
2001
).
61.
S.-H.
Tseng
,
P.
Bargo
,
A.
Durkin
, and
N.
Kollias
, “
Chromophore concentrations, absorption and scattering properties of human skin in-vivo
,”
Opt. Exp.
17
,
14599
14617
(
2009
).
62.
N.
Verdel
and
B.
Majaron
, “
Monitoring of hemodynamics in human skin using pulsed photothermal radiometry and optical spectroscopy
,” paper presented at QIRT—14th Quantitative InfraRed Thermography Conference, Berlin, Germany, 25—29 June, 2018.
63.
C.
Casavola
,
L. A.
Paunescu
,
S.
Fantini
, and
E.
Gratton
, “
Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: Spatial maps and the effect of time and pressure of inflation
,”
J. Biomed. Opt.
5
,
269
276
(
2000
).
64.
M.
Gerken
and
G. W.
Faris
, “
Frequency-domain immersion technique for accurate optical property measurements of turbid media
,”
Opt. Lett.
24
,
1726
1728
(
1999
).
65.
J.
Swartling
,
A.
Bassi
,
C.
D’Andrea
,
A.
Pifferi
,
A.
Torricelli
, and
R.
Cubeddu
, “
Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses
,”
Appl. Opt.
44
,
4684
4692
(
2005
).
66.
D.
Davidov
,
D.
Shemesh
,
O.
Einstein
, and
D.
Abookasis
, “
Parametric handheld optical probe (HOPE) for biological tissue characterization in the near-infrared spectral range
,”
Opt. Commun.
495
,
127076
(
2021
).
67.
D.
Wang
et al, “
Characterization of the ischemic muscle by quantitative hybrid diffuse optical measurement
,”
Opt. Commun.
483
,
126579
(
2021
).
68.
D.
Abookasis
,
M. S.
Mathews
,
C. M.
Owen
,
D. K.
Binder
,
M. E.
Linskey
,
R. D.
Frostig
, and
B. J.
Tromberg
, “
Using NIR spatial illumination for detection and mapping chromophore changes during cerebral edema
,”
Proc. SPIE
6842
,
68422U
(
2008
).
69.
P.
Jones
,
M. J.
Davies
,
K.
Khunti
,
D. T. P.
Fong
, and
D.
Webb
, “
In-shoe pressure thresholds for people with diabetes and neuropathy at risk of ulceration: A systematic review
,”
J. Diabetes Comp.
35
,
107815
(
2021
).
70.
S.-X.
Hou
,
J.-G.
Tang
,
H.-S.
Chen
, and
J.
Chen
, “
Chronic inflammation and compression of the dorsal root contribute to sciatica induced by the intervertebral disc herniation in rats
,”
Pain
105
,
255
264
(
2003
).
71.
Y.
Yoshii
,
W.-L.
Tung
,
H.
Yuine
, and
T.
Ishii
, “
Postoperative diagnostic potentials of median nerve strain and applied pressure measurement after carpal tunnel release
,”
BMC Musculoskelet. Disord.
21
,
22
(
2020
).
You do not currently have access to this content.