A tungsten carbide–cobalt (WC–Co) composite layer was formed on a stainless-steel type 304 (SS304) substrate using multibeam laser metal deposition (LMD) with blue diode lasers. This paper aims to provide WC–Co layer formation with low porosity and high layer formation efficiency by using the multibeam LMD process. The effects of process parameters such as laser output power and powder feed rate are tied together to explain the geometry of the melt layer as well as the fraction of the laser energy used for melting a material. The experimental results show that the porosity rate and layer formation efficiency were recorded at 0.3% and 0.0042 mm3/J, respectively, at the laser output power of 180 W and a powder feed rate of 75 mg/s. It was revealed that layer formation efficiency was dependent on the laser output power.

1.
Y.
Yang
,
C.
Zhang
,
D.
Wang
,
L.
Nie
,
D.
Wellmann
, and
Y.
Tian
, “
Additive manufacturing of WC-Co hardmetals: A review
,”
Int. J. Adv. Manuf. Technol.
108
,
1653
1673
(
2020
).
2.
S.
Rawat
and
H.
Attia
, “
Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites
,”
Wear
267
,
1022
1030
(
2009
).
3.
A.
Amanov
,
R.
Karimbaev
, and
S. P.
Berkebile
, “
Effect of ultrasonic nanocrystal surface modification on wear mechanisms of thermally-sprayed WC-Co coating
,”
Wear
477
,
203873
(
2021
).
4.
M.
Jafari
,
M. H.
Enayati
,
M.
Salehi
,
S. M.
Nahvi
, and
C. G.
Park
, “
Microstructural and mechanical characterizations of a novel HVOF-sprayed WC-Co coating deposited from electroless Ni–P coated WC-12Co powders
,”
Mater. Sci. Eng. A
578
,
46
53
(
2013
).
5.
Y.
Wu
,
S.
Hong
,
J.
Zhang
,
Z.
He
,
W.
Guo
,
Q.
Wang
, and
G.
Li
, “
Microstructure and cavitation erosion behavior of WC–Co–Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying
,”
Int. J. Refract Metals Hard Mater.
32
,
21
26
(
2012
).
6.
T. Y.
Cho
,
J. H.
Yoon
,
K. S.
Kim
,
K. O.
Song
,
Y. K.
Joo
,
W.
Fang
,
S. H.
Zhang
,
S. J.
Youn
,
H. G.
Chun
, and
S. Y.
Hwang
, “
A study on HVOF coatings of micron and nano WC–Co powders
,”
Surf. Coat. Technol.
202
,
5556
5559
(
2008
).
7.
W.
Tillmann
,
L.
Hagen
,
C.
Schaak
,
J.
Liß
,
M.
Schaper
,
K. P.
Hoyer
, and
K. U.
Garthe
, “
Adhesion of HVOF-sprayed WC-Co coatings on 316L substrates processed by SLM
,”
J. Therm. Spray Technol.
29
,
1396
1409
(
2020
).
8.
K.
Bochenek
,
W.
Węglewski
,
A.
Strojny-Nędza
,
K.
Pietrzak
,
T.
Chmielewski
,
M.
Chmielewski
, and
M.
Basista
, “
Microstructure, mechanical, and wear properties of NiCr-Re-Al2O3 coatings deposited by HVOF, atmospheric plasma spraying, and laser cladding
,”
J. Therm. Spray Technol.
31
,
1609
1633
(
2022
).
9.
M.
Webb
,
C.
Senior
,
S.
Bony
, and
J. J.
Morcrette
, “
Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models
,”
Climate Dyn.
17
,
905
922
(
2001
).
10.
A.
Gasser
,
G.
Backes
,
I.
Kelbassa
,
A.
Weisheit
, and
K.
Wissenbach
, “
Laser additive manufacturing: Laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications
,”
Laser Tech. J.
7
,
58
63
(
2010
).
11.
T.
Schopphoven
,
A.
Gasser
, and
G.
Backes
, “
EHLA: Extreme high-speed laser material deposition: Economical and effective protection against corrosion and wear
,”
Laser Tech. J.
14
,
26
29
(
2017
).
12.
T.
Yamaguchi
,
K.
Tanaka
, and
H.
Hagino
, “
Porosity reduction in WC-12Co laser cladding by aluminum addition
,”
Int. J. Refract. Metals Hard Mater.
110
,
106020
(
2023
).
13.
A. K.
Singh
,
K. S.
Bal
,
D.
Dey
,
A. K.
Das
,
A. R.
Pal
,
D. K.
Pratihar
, and
A. R.
Choudhury
, “
Experimental investigation and parametric optimization for minimization of dilution during direct laser metal deposition of tungsten carbide and cobalt powder mixture on SS304 substrate
,”
Powder Technol.
390
,
339
353
(
2021
).
14.
C. Y.
Kong
,
R. J.
Scudamore
, and
J.
Allen
, “
High-rate laser metal deposition of Inconel 718 component using low heat-input approach
,”
Phys. Proc.
5
,
379
386
(
2010
).
15.
K.
Asano
,
M.
Tsukamoto
,
Y.
Sechi
,
Y.
Sato
,
S. I.
Masuno
,
R.
Higashino
,
Takahiro
Hara
,
Masanori
Sengoku
, and
M.
Yoshida
, “
Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers
,”
Opt. Laser Technol.
107
,
291
296
(
2018
).
16.
T.
Kunimine
,
R.
Miyazaki
,
Y.
Yamashita
, and
Y.
Funada
, “
Effects of laser-beam defocus on microstructural features of compositionally graded WC/Co-alloy composites additively manufactured by multi-beam laser directed energy deposition
,”
Sci. Rep.
10
,
8975
(
2020
).
17.
M. S.
Zediker
,
R. D.
Fritz
,
M. J.
Finuf
, and
J. M.
Pelaprat
, “
Laser welding components for electric vehicles with a high-power blue diode laser system
,”
J. Laser Appl.
32
,
022038
(
2020
).
18.
K.
Takenaka
,
Y.
Sato
,
S.
Fujio
,
K.
Nishida
,
R.
Ito
,
E.
Hori
,
Susumu
Kato
,
Masaya
Suwa
,
Shingo
Uno
,
Koji
Tojo
, and
M.
Tsukamoto
, “
Bead-on-plate welding of pure copper with a 1.5-kW high-power blue diode laser
,”
Welding World
67
,
99
107
(
2023
).
19.
A.
Wang
,
Q.
Wei
,
S.
Luo
,
Z.
Tang
,
H.
Yang
,
Y.
Wu
,
Chu Lun Alex
Leung
,
Peter D.
Lee
,
Haowei
Wang
, and
H.
Wang
, “
Blue laser directed energy deposition of aluminum with synchronously enhanced efficiency and quality
,”
Add. Manuf. Lett.
5
,
100127
(
2023
).
20.
K.
Ono
,
Y.
Sato
,
R.
Higashino
,
Y.
Funada
,
N.
Abe
, and
M.
Tsukamoto
, “
Pure copper rod formation by multibeam laser metal deposition method with blue diode lasers
,”
J. Laser Appl.
33
(
2021
).
21.
Y.
Takazawa
,
Y.
Sato
,
K.
Takenaka
,
Y.
Yamashita
,
T.
Kunimine
, and
M.
Tsukamoto
, “
High speed coating for pure copper by multi-beam laser metal deposition method with high intensity blue diode lasers
,”
J. Laser Appl.
35
(
2023
).
You do not currently have access to this content.