A fundamental understanding of ablation in different incidence angles is indispensable to expand the result to volume ablation where nonperpendicular irradiation exists. So far, no study with this orientation has been conducted in the category of volume laser machining. In this study, a nanosecond laser with different fluencies was utilized for single-point ablation experiments. The effect of incidence angles of 0°, 30°, and 60° on the ablation depth and the crater geometry was evaluated. Different laser pulse numbers are also considered. The results show that the ablation depth for 0° and 30° angles is almost in the same range for the initial pulses, but afterward, the ablation depth for the incidence 30° drops considerably. As the number of incident pulses increases, the ablation depth first develops approximately linearly and then grows exponentially. By changing the incident from 0° to 60°, the affecting area changes as well. The affecting area could be categorized into two distinct areas: (1) ablation area (A.A) where the crater ablation depth rapidly increases for the first 20 pulses and then, as more incident pulses arrive, it does not grow anymore and reaches a plateau due to the increase in the ablation depth. The second area (2) is the heat-affected area (H.A.A) of the crater where no further ablation occurs, but due to heat accumulation, it becomes constantly bigger when more incident pulses strike the crater. This heat-affected area tends to stay almost constant for the first incident pulses (up to 10) and, after a sharp increase, tends to enlarge steadily as the number of incident pulses rises to 70.

1.
G.
Królczyk
,
S.
Wojciechowski
, and
R. W.
Maruda
,
Materials
13(3), 612 (2020).
2.
D.
Yang
,
Practical Applications of Laser Ablation
(
IntechOpen
, London,
2021
).
3.
X.-T.
Zhao
,
F.
Tang
,
B.
Han
, and
X.-W.
Ni
, “
The influence of laser ablation plume at different laser incidence angle on the impulse coupling coefficient with metal target
,”
J. Appl. Phys.
120
,
213103
(
2016
).
4.
Y.
Miyasaka
,
M.
Hashida
,
T.
Nishii
,
S.
Inoue
, and
S.
Sakabe
, “
Derivation of effective penetration depth of femtosecond laser pulses in metal from ablation rate dependence on laser fluence, incidence angle, and polarization
,”
Appl. Phys. Lett.
106
,
13101
(
2015
).
5.
D. S.
George
,
A.
Onischenko
, and
A. S.
Holmes
, “
On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials
,”
Appl. Phys. Lett.
84
,
1680
1682
(
2004
).
6.
X.
Wang
,
J.
Duan
,
M.
Jiang
,
F.
Zhang
,
S.
Ke
,
B.
Wu
, and
X.
Zeng
, “
Investigation of processing parameters for three-dimensional laser ablation based on Taguchi method
,”
Int. J. Adv. Manuf. Technol.
93
,
2963
2974
(
2017
).
7.
A.
Zahedi
, “
Development and applications of laser generated microstructures on CBN grinding wheels
,”
Dissertation
(
Shaker Verlag
, 2020).
8.
W.
Zhou
,
G.
Chen
,
H.
Pan
,
K.
Cao
,
F.
Luo
,
Y.
Wei
, and
M.
Li
, “
Dual-laser dressing concave rectangular bronze-bonded diamond grinding wheels
,”
Diamond Relat. Mater.
123
,
108830
(
2022
).
9.
M.
Mukhopadhyay
and
P. K.
Kundu
, “
Laser dressing of grinding wheels a review
,”
Int. J. Mechatron. Manuf. Syst.
11
,
167
–181 (
2018
).
10.
H.
Deng
,
Z.
Xu
,
P.
Zhu
, and
H.
Ying
, “
Optimization of efficiency and uniformity of bond removal during laser sharpening
,”
Int. J. Adv. Manuf. Technol.
103
,
3087
3096
(
2019
).
11.
H.
Deng
,
G. Y.
Chen
,
C.
Zhou
,
S. C.
Li
, and
M. J.
Zhang
, “
Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels
,”
Appl. Surf. Sci.
290
,
475
81
(
2014
).
12.
L.
Dai
,
G.
Chen
,
M.
Li
, and
S.
Yuan
, “
Efficient and precision dressing of arc-shaped diamond grinding wheel by laser dressing and electrical discharge dressing
,”
Diamond Relat. Mater.
125
,
108978
(
2022
).
13.
Bahman
Azarhoushang
,
Esmaeil Ghadiri
Zahrani
,
Ali
Zahedi
, and
Heike
Kitzig-Frank
, Innovatives Konzept für das Laserkonditionieren von Schleifwerkzeugen (2021).
14.
B.
Soltani
,
F.
Hojati
,
A.
Daneshi
, and
B.
Azarhoushang
, “
Simulation of the laser-material interaction of ultrashort pulse laser processing of silicon nitride workpieces and the key factors in the ablation process
,”
Int. J. Adv. Manuf. Technol.
114
,
3719
3738
(
2021
).
15.
M.
Auinger
,
P.
Ebbinghaus
,
A.
Blümich
, and
A.
Erbe
, “
Effect of surface roughness on optical heating of metals
,”
J. Eur. Opt. Soc. Rapid Publ.
9
(
2014
).
16.
D.
Perez
and
L. J.
Lewis
, “
Molecular-dynamics study of ablation of solids under femtosecond laser pulses
,”
Phys. Rev. B
67
,
184102
(
2003
).
17.
Z.
Yu
,
J.
Hu
, and
K.
Li
, “
Investigating the multiple-pulse drilling on titanium alloy in picosecond laser
,”
J. Mater. Process. Technol.
268
,
10
17
(
2019
).
18.
J. Zhang and H. W. Richardson,
Ullmann's Encyclopedia of Industrial Chemistry
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2000
).
19.
H. W.
Richardson
, “
Copper compounds
,” in
Ullmann's Encyclopedia of Industrial Chemistry
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2000
).
20.
X.-L.
Liu
,
W.
Cheng
,
M.
Petrarca
, and
P.
Polynkin
, “
Universal threshold for femtosecond laser ablation with oblique illumination
,”
Appl. Phys. Lett.
109
,
161604
(
2016
).
21.
I.
Gutu
,
C.
Petre
,
I. N.
Mihailescu
,
M.
Taca
,
E.
Alexandrescu
, and
I.
Ivanov
, “
Surface treatment with linearly polarized laser beam at oblique incidence
,”
Opt. Laser Technol.
34
,
381
388
(
2002
).
22.
P.
Boerner
,
M.
Hajri
,
T.
Wahl
,
J.
Weixler
, and
K.
Wegener
, “
Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining
,”
J. Appl. Phys.
125
,
234902
(
2019
).
23.
C. W.
Schneider
and
T.
Lippert
, “
PLD plasma plume analysis: A summary of the PSI contribution
,”
Appl. Phys. A
129
,
129
–138 (
2023
).
24.
S. S.
Harilal
,
P. K.
Diwakar
,
M. P.
Polek
, and
M. C.
Phillips
, “
Morphological changes in ultrafast laser ablation plumes with varying spot size
,”
Opt. Express
23
,
15608
15615
(
2015
).
25.
M.
Khaleeq-ur-Rahman
,
K.
Siraj
,
M. S.
Rafique
,
K. A.
Bhatti
,
A.
Latif
,
H.
Jamil
, and
M.
Basit
, “
Laser induced plasma plume imaging and surface morphology of silicon
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
267
,
1085
1088
(
2009
).
26.
I.
Shiganov
,
D.
Melnikov
,
A.
Misyurov
,
M.
Melnikova
,
D.
Shtereveria
, and
Z.
Myat
, “
Investigation the effect of laser ablation parameters in a liquid in order to reduce the pulse energy during laser shock peening
,”
Opt. Quantum Electron.
52
,
203
(
2020
).
You do not currently have access to this content.