Cutting thick plates is affected not only by the laser power but also by the cut kerf width and the melt flow dynamics that determine the ejection of the molten material. Employing the same laser beam intensity distribution for various thicknesses is the limiting factor when cutting thicker plates. This paper investigates fiber laser fusion cutting of 25 mm thick aluminum with dynamic beam shaping (DBS). While both static and longitudinal dynamic intensity distributions fail to cut this thickness with a 4 kW laser power, a cut through is achieved using annular and elliptical intensity distributions. However, an improvement of 45% in cutting speed can be achieved using an elliptical intensity distribution compared to an annular one. In order to understand the effect of the beam shape, an infrared thermal camera is used to study lateral heat propagation when using different process parameters. Moreover, to analyze the melt flow when changing the DBS frequency, high-speed imaging is utilized to observe the molten material inside the cut kerf. Finally, the cut edge quality is investigated for different cutting conditions.

1.
E. A.
Shcherbakov
,
V. V.
Fomin
,
A. A.
Abramov
,
A. A.
Ferin
,
D. V.
Mochalov
, and
V. P.
Gapontsev
,
Industrial Grade 100 kW Power CW Fiber Laser
(
Advanced Solid-State Lasers Congress
,
Paris
,
2013
), ATh4A.2.
2.
K.
Tamura
,
R.
Ishigami
, and
R.
Yamagishi
, “
Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser
,”
J. Nucl. Sci. Technol.
53
,
916
920
(
2016
).
3.
C.
Wandera
,
A.
Salminen
, and
V.
Kujanpaa
, “
Inert gas cutting of thick-section stainless steel and medium-section aluminum using a high power fiber laser
,”
J. Laser Appl.
21
,
154
161
(
2009
).
4.
A.
Riveiro
,
F.
Quintero
,
R.
Comesaña
,
J.
Del Val
,
M.
Boutinguiza
,
F.
Lusquiños
et al, “
The influence of the assist gas flow regime on the laser cutting of aeronautic aluminium alloys
,” in
4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication (PICALO)
, 23-25 March 2010, Wuhan, People's Republic of China (LIA Conference Proceedings,
2010
), pp.
23
25
.
5.
A.
Riveiro
,
F.
Quintero
,
F.
Lusquiños
,
R.
Comesaña
,
J.
Del Val
, and
J.
Pou
, “
The role of the assist gas nature in laser cutting of aluminum alloys
,”
Phys. Proc.
12
,
548
554
(
2011
).
6.
C.
Chen
,
M.
Gao
, and
X.
Zeng
, “
Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al-Cu aluminum alloy
,”
Int. J. Machine Tools Manuf.
109
,
58
64
(
2016
).
7.
A.
Riveiro
,
F.
Quintero
,
J.
del Val
,
M.
Boutinguiza
,
D.
Wallerstein
,
R.
Comesaña
,
F.
Lusquiños
, and
J.
Pou
, “
Laser cutting of aluminum alloy Al-2024-T3
,”
Proc. Manuf.
13
,
396
401
(
2017
).
8.
L.
Zgripcea
,
A.
Socalici
,
V.
Putan
, and
C.
Birtok Bǎneasǎ
, “
Unconventional method of cutting aluminum plates using fiber laser with oxygen assist gas
,”
J. Phys.: Conf. Ser.
2212
,
012033
(
2022
).
9.
N.
Levichev
,
P.
Herwig
,
A.
Wetzig
, and
J. R.
Duflou
, “
Towards robust dynamic beam shaping for laser cutting applications
,”
Proc. CIRP
111
,
746
749
(
2022
).
10.
C.
Goppold
,
T.
Pinder
, and
P.
Herwig
, “
Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting
,”
Adv. Opt. Technol.
5
,
61
70
(
2016
).
11.
N.
Levichev
,
M. R.
Vetrano
, and
J. R.
Duflou
, “
Melt flow and cutting front evolution during laser cutting with dynamic beam shaping
,”
Opt. Lasers Eng.
161
,
107333
(
2023
).
12.
M.
Kardan
,
N.
Levichev
, and
J. R.
Duflou
, “
Experimental and numerical investigation of thick plate laser cutting using dynamic beam shaping
,”
Proc. CIRP
111
,
740
745
(
2022
).
13.
M.
Kardan
,
N.
Levichev
,
S.
Castagne
, and
J. R.
Duflou
, “
Dynamic beam shaping requirements for fiber laser cutting of thick plates
,”
J. Manuf. Process.
103
,
287
297
(
2023
).
14.
M.
Sawannia
,
M.
Borkmann
,
P.
Herwig
,
A.
Wetzig
,
R.
Weber
, and
T.
Graf
, “
Influence of laser beam oscillation on the cutting front geometry investigated by high-speed 3D-measurements
,”
Proc. CIRP
111
,
736
739
(
2022
).
15.
J.
Lind
,
J.
Wagner
,
N.
Weckenmann
,
R.
Weber
, and
T.
Graf
, “
Investigation of the influence of beam oscillation on the laser beam cutting process using high-speed X-ray imaging
,” in
Lasers in Manufacturing Conference
, 21-24 June 2021, World of Photonics Congress (Lasers in Manufacturing (LiM),
2021
).
16.
T.
Pinder
and
C.
Goppold
, “
Understanding the changed mechanisms of laser beam fusion cutting by applying beam oscillation, based on thermographic analysis
,”
Appl. Sci.
11
,
921
(
2021
).
17.
N.
Levichev
,
A.
Tomás García
, and
J. R.
Duflou
, “
On melt flow visualization in high-power fiber laser cutting
,” in
Proceedings of SPIE 11994, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XI
, SPIE Photonics West (SPIE LASE), San Francisco, CA (SPIE
2022
), p.
119940D
.
18.
M.
Kardan
,
N.
Levichev
,
A.
Tomás García
, and
J. R.
Duflou
, “
Revisiting image-based quality evaluation of laser cut edges
,”
Mater. Res. Proc.
25
,
363
370
(
2023
).
19.
N.
Levichev
,
G. C.
Rodrigues
,
V.
Vorkov
, and
J. R.
Duflou
, “
Coaxial camera-based monitoring of fiber laser cutting of thick plates
,”
Opt. Laser Technol.
136
,
106743
(
2021
).
20.
C.
Goppold
,
T.
Pinder
,
S.
Schulze
,
P.
Herwig
, and
A. F.
Lasagni
, “
Improvement of laser beam fusion cutting of mild and stainless steel due to longitudinal, linear beam oscillation
,”
Appl. Sci.
10
,
3052
(
2020
).
21.
A.
Stournaras
,
P.
Stavropoulos
,
K.
Salonitis
, and
G.
Chryssolouris
, “
An investigation of quality in CO2 laser cutting of aluminum
,”
CIRP J. Manuf. Sci. Technol.
2
,
61
69
(
2009
).
22.
H.
Pang
and
T.
Haecker
, “
Laser cutting with annular intensity distribution
,”
Proc. CIRP
94
,
481
486
(
2020
).
You do not currently have access to this content.