High-speed laser directed energy deposition (HSL-DED) is a variant of the laser directed energy deposition process where a defocused metal powder stream is used, and it typically involves processing speeds exceeding 5 m/min. However, the interactions between the laser beam, powder stream, and substrate surface in HSL-DED have not been extensively studied. This study used a specialized XIRIS XVC-1000 welding camera with a narrow bandpass filter to record the interaction phenomenon. These observations were first carried out without powder delivery, using laser surface melting techniques, and involved processing speeds of up to 20 m/min and laser powers of up to 3 kW. HSL-DED with powder delivery was then conducted with the same parameter combinations for comparative analysis. The in situ observations in laser surface melting and HSL-DED identified a physical separation between the laser spot and the melt pool boundary, referred to as melt pool lag. Different substrates’ chemical compositions and the resulting thermophysical properties significantly impact melt pool dynamics during the high-speed laser-material interactions for a given process condition. The findings from this work have enabled a better understanding and control of melt pool dynamics in HSL-DED.

1.
W.
Kuppers
,
G. M.
Backes
, and
J.
Kittel
, “Extreme high-speed laser deposition welding process,” German patent DE102011100456B4 (7 May
2015
), see https://patents.google.com/patent/DE102011100456B4/en.
2.
Zeqin
Cui
,
Zhen
Qin
,
Peng
Dong
,
Yunjun
Mi
,
Dianqing
Gong
, and
Weiguo
Li
, “
Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment
,”
Mater. Lett.
259
,
126769
(
2020
), ISSN: 0167-577X.
3.
Z.
Wu
,
Q.
Ma
,
M.
Brandt
, and
N.
Matthews
, “
Ultra-high-speed laser deposition of Stellite® 6 alloy on mild steel
,”
JOM
72
, 4632–4638 (
2020
).
4.
Laser Cladding
, edited by
E.
Toyserkani
,
A.
Khajepour
, and
S. F.
Corbin
(
CRC Press
,
Boca Raton
,
2004
).
5.
T.
Schopphoven
,
N.
Pirch
,
S.
Mann
,
R.
Poprawe
,
C. L.
Häfner
, and
J. H.
Schleifenbaum
, “
Statistical/numerical model of the powder-gas jet for extreme high-speed laser material deposition
,”
Coatings
10
, 416–433 (
2020
).
6.
T.
Schopphoven
,
Experimentelle und modelltheoretische Untersuchungen zum Extremen Hochgeschwindigkeits-Laserauftragschweißen
,
Ph.D. thesis
(
Fraunhofer Verlag
,
Stuttgart
,
2020
).
7.
A.
Dworak
,
J.
Sienicki
,
P.
Koruba
, and
P.
Jurewicz
, “
Application of ultra high speed laser cladding technology for functional coatings deposition
,” in
Proceedings of the 74th AHS International Annual Conference
, Phoenix, AZ, 14–17 May 2018 (AHS International, Fairfax, VA,
2018
), p.
6
.
8.
T.
Schopphoven
,
A.
Gasser
,
K.
Wissenbach
, and
R.
Poprawe
, “
Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying
,”
J. Laser Appl.
28
, 022501 (
2016
).
9.
T.
Schopphoven
,
A.
Gasser
, and
G.
Backes
, “
EHLA: Extreme high-speed laser material deposition—Economical and effective protection against corrosion and wear
,”
Laser Tech. J.
14
,
26
29
(
2017
).
10.
K.
Partes
and
G.
Sepold
, “
Modulation of power density distribution in time and space for high speed laser cladding
,”
J. Mater. Process. Technol.
195
,
27
33
(
2008
).
11.
K.
Partes
, “
Analytical model of the catchment efficiency in high speed laser cladding
,”
Surf. Coat. Technol.
204
,
366
371
(
2009
).
12.
M.
Gopinath
,
Monitoring of Molten Pool Thermal History and its Significance in Laser Cladding Process
, in
Proceedings of the ASME 12th International Manufacturing Science and Engineering Conference
, Los Angeles, CA, 4–8 June 2017 (AMSE Digital Collection, New York, NY, 2017), Vol. 2, pp.
MSEC2017
2657
.
13.
Y.
Song
,
X.
Li
,
C.
Hu
,
X.
Luo
,
H.
Ma
, and
X.
Tang
, “
Study on powder dynamics of ultra-high-speed laser deposition
,”
J. Laser Appl.
33
,
032019
(
2021
).
14.
P.
Koruba
and
J.
Reiner
, “
Thermal imaging of laser powder interaction zone in ultra-high speed laser cladding process
,” in
Proceedings of 2018 International Conference on Quantitative Infrared Thermography
, Berlin, Germany, 25–29 June 2018 (QIRT Council, Berlin, Germany,
2018
), pp.
253
260
.
15.
L. Q.
Li
and
Y.
Huang
, “
Interaction of laser beam, powder stream and molten pool in laser deposition processing with coaxial nozzle
,”
J. Phys. Conf. Series
1063
,
012078
(
2018
).
16.
Q.
Yan
,
K.
Yang
,
Z. D.
Wang
,
M. Z.
Chen
,
G. F.
Sun
, and
Z. H.
Ni
, “
Surface roughness optimization and high-temperature wear performance of H13 coating fabricated by extreme high-speed laser deposition
,”
Opt. Laser Technol.
149
,
107823
(
2022
).
17.
M.
Biegler
,
B.
Graf
, and
M.
Rethmeier
, “
In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations
,”
Addit. Manuf.
20
,
101
110
(
2018
).
18.
H.
Siva Prasad
,
F.
Brueckner
, and
A. F. H.
Kaplan
, “
Powder catchment in laser metal deposition
,”
J. Laser Appl.
31
,
022308
(
2019
).
19.
Matthias
Brucki
,
Tobias
Schmickler
,
Andres
Gasser
, and
Constantin Leon
Häfner
, “
Influence of the relative position of powder–Gas Jet and laser beam on the surface properties of Inconel 625 coatings produced by extreme high-speed laser material deposition (EHLA)
,”
Coatings
13
,
998
1021
(
2023
).
20.
I.
Hadi
, “
Mathematical estimation of melt depth in conduction mode of laser spot remelting process
,”
J. Appl. Phys.
112
,
123106
(
2012
).
21.
Edmund Optics, Optical Filters
(
2022
), see https://www.edmundoptics.com.au/knowledge-center/application-notes/optics/optical-filters (last accessed October 31, 2022).
22.
Keith
Legg
,
Bruce
Sartwell
,
Jean-Gabriel
Legoux
,
Montia
Nestler
,
Christopher
Dambra
,
Daming
Wang
,
John
Quets
,
Paul
Natishan
,
Philip
Bretz
, and
Jon
Devereaux
,
Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces
(
Naval Research Laboratory
, Washington, DC,
2006
).
23.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J.-Y.
Tinevez
,
D. J.
White
,
V.
Hartenstein
,
K.
Eliceiri
,
P.
Tomancak
, and
A.
Cardona
, “
Fiji: An open-source platform for biological-image analysis
,”
Nat. Methods
9
,
676
682
(
2012
).
24.
H.
Hugel
and
F.
Dausinger
, “
Interaction phenomena
,” in
Handbook of the EuroLaser Academy
, 1st ed. (Springer, New York, NY,
1998
), Vol. 2, pp.
1
97
, ISBN: 978-1-4613-7417-6.
25.
D.
Bergström
,
J.
Powell
, and
A.
Kaplan
, “
The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature
,”
Appl. Surf. Sci.
253
,
5017
5028
(
2007
).
26.
N.
Saunders
,
U. K. Z.
Guo
,
X.
Li
,
A. P.
Miodownik
, and
J. P.
Schillé
, “
Using JMatPro to model materials properties and behavior
,”
JOM
55
,
60
65
(
2003
).
27.
Joerg
Volpp
, “
Laser beam absorption measurement at molten metal surfaces
,”
Measurement
209
,
112524
(
2023
).
You do not currently have access to this content.